Skip to main content
Log in

Role of pyruvate and ascorbate production in regulation of antioxidant enzymes and membrane LPO levels in Fusarium Acuminatum

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The role of pyruvate and ascorbate in the regulation of superoxide dismutase (SOD); catalase (CAT); glutathione peroxidase enzymes; and, therefore, membrane lipid peroxidation (LPO) levels in Fusarium acuminatum was investigated in media containing either glycerin or glucose as a carbon source, depending on the incubation period, in the range of 5–25 g/L. Increasing SOD activity between d 9 and 16 of the incubation period showed a positive correlation with a significant increase in pyruvate production up to 15 g/L of glycerin and glucose. In addition, maximum ascorbate production was observed at 15 g/L of glycerin as 82.5 ± 2.1 and 20 g/L of glucose as 54±1.51, whereas CAT activity decreased with an increased concentration of both carbon sources. When compared with the LPO levels determined in media supplemented with glycerin and glucose, the minimum LPO level was 1.88±0.028 nmol of malondialdehyde/g wet wt at 15 g/L of glycerin on d 16, at which it was also observed to have a maximum pyruvate and ascorbate production and SOD, CAT, and GSH-Px activities of 75±1.42 µg/mL, 82.5±2.1 µg/mL, 32.5±0.634 µg/mL, 86.8±2.58 IU/mg, and 1.867 IU/mg, respectively. These results indicate that the biosynthesis of pyruvate and ascorbate may be involved in the regulation of antioxidant enzymes, depending on the glycerin and glucose concentrations, and also this defense network was effective in preventing membrane damage from oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cadenes, E. (1989), Annu. Rev. Biochem. 58, 79–110.

    Article  Google Scholar 

  2. Stuort, L., Michael, J. D., and Rager, T. D. (2001), Exp. Gerontol. 36, 1503–1518.

    Article  Google Scholar 

  3. Harman, D. (1956), J. Gerontol. 11, 298–300.

    PubMed  CAS  Google Scholar 

  4. Halliwell, B. and Gutteridge, J. M. C. (1999), Free Radical in Biology and Medicine, Oxford University Press, Oxford, UK.

    Google Scholar 

  5. Ramsey, J. J., Harper, M. E., and Weindruch, R. (2000), Free Radical Biol. Med. 29(10), 946–968.

    Article  CAS  Google Scholar 

  6. Camougrand, N. and Rigoulet, M. (2001), Respir. Physiol. 128, 393–401.

    Article  PubMed  CAS  Google Scholar 

  7. Sohol, R. S. and Brunk, U. T. (1992), Mutat. Res. 275, 295–304.

    Google Scholar 

  8. Osiewacz, H. D. and Stumpferl, S. W. (2001), Arch. Gerontol. Geriat. 32, 185–192.

    Article  CAS  Google Scholar 

  9. Lidon, F. C. and Teixeria, M. G. (2000), Plant Sci. 152, 7–15.

    Article  CAS  Google Scholar 

  10. Toueti, D. (1997), in Oxidative Stress and Molecular Biology of Antioxidant Defences, Scandolies, J. G., ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 447–493.

    Google Scholar 

  11. Smirnoff, N. and Wheeler, G. L. (1999), Ascorbic acid metabolism in plants. In: Bryant, J. A., Burrell, M. M., and Kruger, N. J., eds. Plant Carbohydrate Biochemistry. Washington, DC: Scientific Publishers, pp. 215–230.

    Google Scholar 

  12. François, J. and Porrou, J. L. (2001), FEMS Microbiol. Rev. 25, 125–145.

    Article  PubMed  Google Scholar 

  13. Scheffer, R. P. and Walker, J. C. (1953), Phytopathology 43, 116–125.

    Google Scholar 

  14. Crosti, N., Serudei, T., Bajer, J., and Serra, A. (1987), J. Clin. Chem. Clin. Biochem. 25(7), 265–272.

    PubMed  CAS  Google Scholar 

  15. Aebi, H. (1984), Catalase in vitro. In: Colowick, S. P. and Kaplan, N. O., eds. Methods in Enzymology. Acad. Press, pp. 114–121.

  16. Paglia, D. E. and Valentine, W. N. (1967), J. Lab. Clin. Med. 70, 158–165.

    PubMed  CAS  Google Scholar 

  17. Friedman, E. and Haugen, G. E. (1943), J. Biol. Chem. 147, 415–442.

    Google Scholar 

  18. Nino, H. V. and Shaw, W. (1976), Vitamins. In: Tietz, N. W., ed., Fundamentals of Clinical Chemistry, Philadelphia: WB Saunders, pp. 542–550.

    Google Scholar 

  19. Buege, J. A. and Aust, S. D. (1978), Methods Enzymol. 52, 464–478.

    Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. J. (1951), Biol. Chem. 193, 265–276.

    CAS  Google Scholar 

  21. Rolfe, D. F. S. and Brown, G. C. (1997), Physiol. Rev. 77, 731–758.

    PubMed  CAS  Google Scholar 

  22. Pederson, P. L. (1999), J. Bioenerg. Biomembr. 31, 291–304.

    Article  Google Scholar 

  23. Flores, C. L., Rodriquez, C., Petiti, T., and Gancedo, C. (2000), FEMS Microbiol. Rev. 24, 507–529.

    PubMed  CAS  Google Scholar 

  24. Çalık, P. and Özdamar, T. (2001), Biochem. Eng. J. 8, 61–81.

    Article  PubMed  Google Scholar 

  25. Diderich, J. A., Schepper, M., Hoek, V. P., Luttik, M. A. H., van Dijken, J. P., Prank, J. T., Klassen, P., Boelens, H. F. M., de Mattos M. T. T., van Dam, K., and Kruckeberg, A. L. (1999), J. Biol. Chem. 274, 15,350–15,359.

    Article  CAS  Google Scholar 

  26. Peinado, J. M., Cameira-dos Santos, P. J., and Loureiro Dias, M. C. (1989), J. Gen. Microbiol. 135, 195–201.

    PubMed  CAS  Google Scholar 

  27. Van den Broek, P. J. A., van Gompel, A. E., Luttik, M. A. H., Prank, J. I., and van Leeuwen, C. M. (1997), Biochem. J. 321, 487–495.

    PubMed  Google Scholar 

  28. Tamas, M. J., Luyten, K., Sutherlland, F. C., et al. (1999), Mol. Microbiol. 31, 1087–1104.

    Article  PubMed  CAS  Google Scholar 

  29. Lages, F. and Lucas, C. (1995), Yeast 11, 111–119.

    Article  PubMed  CAS  Google Scholar 

  30. De Pinto M. C., Tommasi, F., and De Gora, L. (2000), Plant Physiol. Biochem. 2(38), 541–550.

    Article  Google Scholar 

  31. Pigeolet, E., Corbisier, P., Houbion, A., Lambert, D., Michiels, C., Zachary, M. D., and Remacle, J. (1990), Mech. Ageing Dev. 51, 283–297.

    Article  PubMed  CAS  Google Scholar 

  32. Ayar-Kayali, M. and Tarhan, L. (2003), Enzyme and Microbial Technology 33, 828–835.

    Article  CAS  Google Scholar 

  33. Hengge-Aranis, R., Lange, R., Henneberg, N., and Ficher, D. (1993), J. Bacteriol. 175, 259–265.

    Google Scholar 

  34. Kayali-Ayar, H., Ozer, N., and Tarhan, L. (2002), Arch. Biochem. Biophys. 400(2), 265–272.

    Article  Google Scholar 

  35. Camougrand, N. and Rigoulet, M. (2001), Respir. Physiol. 128, 393–401.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leman Tarhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayali, H.A., Tarhan, L. Role of pyruvate and ascorbate production in regulation of antioxidant enzymes and membrane LPO levels in Fusarium Acuminatum . Appl Biochem Biotechnol 120, 15–27 (2005). https://doi.org/10.1385/ABAB:120:1:15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:120:1:15

Index Entries

Navigation