Advertisement

Applied Biochemistry and Biotechnology

, Volume 119, Issue 2, pp 171–180 | Cite as

Coupled hydroperoxide lyase and alcohol dehydrogenase for selective synthesis of aldehyde or alcohol

  • Mohamed Gargouri
  • Najla Ben Akacha
  • Marie-Dominique Legoy
Original Articles

Abstract

The main objective of this work was to improve the selective synthesis of a volatile compound: aldehyde or alcohol using a coupled-enzyme system. A novel method of synthesis of C6-aldehyde or alcohol was carried out in the presence of hydroperoxide lyase (HPLS) activity coupled to alcohol dehydrogenase (ADH) activity. After cleavage of the initial substrate, hydroperoxy fatty acid catalyzed by HPLS, the second enzyme, ADH, can catalyze the reduction of the aldehyde to the corresponding alcohol, or the oxidation of contaminating alcohol into aldehyde, depending on the cofactor present in the medium (oxidized or reduced form). We succeeded in improving the synthesis of one of the products. When coupling HPLS to NADP, the selectivity of hexanal production from 13-hydroperoxy linoleic acid was improved, and hexanol production was reduced 5 to 10 times after 15 min of reaction at 15 °C and pH 7.0. In another experiment, HPLS was coupled to ADH in the presence of NADH. The production of alcohol (hexenols) was then favored especially when using 13-hydroperoxy linolenic acid as substrate at concentrations >15 mM, reaching 95% of the products. Coupling of the enzymatic reactions (cleavage reduction) not only reduced the number of steps but also allowed us to increase the conversion rate of the initial substrate (hydroperoxy fatty acid). Structures of the compounds produced in this work were confirmed using gas chromatography-mass spectroscopy analysis. Each of these products has its own delicately different fresh odor that can be used in various applications.

Index Entries

Alcohol dehydrogenase coupled enzymes specific synthesis hexanal hexanol hexenal hexenol hydroperoxide lyase hydroperoxy fatty acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hatanaka, A., Sekiya, J., and Kajiwara, T. (1978), Phytochemistry 17, 869–872.CrossRefGoogle Scholar
  2. 2.
    Sekiya, J., Kajiwara, T., Munechika, K., and Hatanaka, A. (1983), Phytochemistry 22, 1867–1869.CrossRefGoogle Scholar
  3. 3.
    Hatanaka, A. (1993), Phytochemistry 34, 1201–1218.CrossRefGoogle Scholar
  4. 4.
    Gardner, H. W. (1995), HortScience 30, 197–204.Google Scholar
  5. 5.
    Gargouri, M. (2001), in Recent Research Development in Oil Chemistry, vol. 5, Pandalai, S. G., ed., Transworld Research Network, Trivandrum, India, pp. 13–37.Google Scholar
  6. 6.
    Clark, G. S. (1990), Perfumer Flavorist 15, 47–52.Google Scholar
  7. 7.
    Brunerie, P. (1989), French patent 89, 12 901.Google Scholar
  8. 8.
    Fauconnier, M. L., Perez, A. G., Sanz, C., and Marlier, M. (1997), J. Agric. Food Chem. 45, 4232–4236.CrossRefGoogle Scholar
  9. 9.
    Matsui, K., Toyota, H., Kajiwara, T., Kakuno, T., and Hatanaka, A. (1991), Phytochemistry 30, 2109–2113.CrossRefGoogle Scholar
  10. 10.
    Shibata, Y., Matsui, K., Kajiwara, T., and Hatanaka, A. (1995), Biochem. Biophys. Res. Commun. 207, 438–443.PubMedCrossRefGoogle Scholar
  11. 11.
    Itoh, A. and Vick, B.A. (1999), Biochim. Biophys. Acta 1436, 531–540.PubMedGoogle Scholar
  12. 12.
    Gardner, H. W. (1991), Biocheim. Biophys. Acta 1084, 221–239.Google Scholar
  13. 13.
    Hatanaka, A. (1996), Food Rev. Int. 12, 303–350.CrossRefGoogle Scholar
  14. 14.
    Kim, I. S. and Grosch, W. (1981), J. Agric. Food Chem. 29, 1220–1225.CrossRefGoogle Scholar
  15. 15.
    Gargouri, M. and Legoy, M. D. (1998), Biotechnol. Lett. 20, 23–26.CrossRefGoogle Scholar
  16. 16.
    Schreier, P. and Lorenz, G. (1982), Z. Naturforsch. 37c, 165–173.Google Scholar
  17. 17.
    Hatanaka, A., Kajiwara, T., Sekiya, J., and Inouye, S. (1982), Phytochemistry 21, 13–17.CrossRefGoogle Scholar
  18. 18.
    Vick, B. A. and Zimmerman, D. C. (1976), Plant Physiol. 57, 780–788.PubMedCrossRefGoogle Scholar
  19. 19.
    Gargouri, M., Drouet, P., and Legoy, M. D. (2004), J. Biotechnol. 111, 59–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Galliard, T. and Phillips, D. R. (1976), Biochim. Biophys. Acta 431, 278–287.PubMedGoogle Scholar
  21. 21.
    Matsui, K., Shibata, Y., Kajiwara, T., and Hatanaka, A. (1989), Z. Naturforsch. 44c, 883–885.Google Scholar
  22. 22.
    Matoba, T., Sakura, A., Taninoki, N., Saitoh, T., Kariya, F., Kuwahata, M., Yukawa, N., Fujino, S., and Hasegawa, K. (1989), J. Food Sci. 54, 1607–1610.CrossRefGoogle Scholar
  23. 23.
    Legoy, M. D., Kim, H. S., and Thomas, D. (1985), Process Biochem. 20, 145–148.Google Scholar
  24. 24.
    Lortie, R., Villaume, I., Legoy, M. D., and Thomas, D. (1989), Biotechnol. Bioeng. 33, 229–232.CrossRefGoogle Scholar
  25. 25.
    Branden, C. V., Jornvall, H., Eklund, H., and Furugren, B. (1975), in The Enzymes, 3rd ed., vol. 11, Boyer, P. D., ed., Academic Press, New York, pp. 103–187.Google Scholar
  26. 26.
    Hatanaka, A., Kajiwara, T., and Harada, T. (1975), Phytochemistry 14, 2589–2592.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Mohamed Gargouri
    • 1
  • Najla Ben Akacha
    • 1
  • Marie-Dominique Legoy
    • 2
  1. 1.Department of Biological and Chemical EngineeringNational Institute of Applied Science and Technology (INSAT)Tunis CedexTunisia
  2. 2.Laboratoire de Biotechnologie et de Chimie Bio-organiqueUniversité de La RochelleLa RochelleFrance

Personalised recommendations