Skip to main content
Log in

Coupled hydroperoxide lyase and alcohol dehydrogenase for selective synthesis of aldehyde or alcohol

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The main objective of this work was to improve the selective synthesis of a volatile compound: aldehyde or alcohol using a coupled-enzyme system. A novel method of synthesis of C6-aldehyde or alcohol was carried out in the presence of hydroperoxide lyase (HPLS) activity coupled to alcohol dehydrogenase (ADH) activity. After cleavage of the initial substrate, hydroperoxy fatty acid catalyzed by HPLS, the second enzyme, ADH, can catalyze the reduction of the aldehyde to the corresponding alcohol, or the oxidation of contaminating alcohol into aldehyde, depending on the cofactor present in the medium (oxidized or reduced form). We succeeded in improving the synthesis of one of the products. When coupling HPLS to NADP, the selectivity of hexanal production from 13-hydroperoxy linoleic acid was improved, and hexanol production was reduced 5 to 10 times after 15 min of reaction at 15 °C and pH 7.0. In another experiment, HPLS was coupled to ADH in the presence of NADH. The production of alcohol (hexenols) was then favored especially when using 13-hydroperoxy linolenic acid as substrate at concentrations >15 mM, reaching 95% of the products. Coupling of the enzymatic reactions (cleavage reduction) not only reduced the number of steps but also allowed us to increase the conversion rate of the initial substrate (hydroperoxy fatty acid). Structures of the compounds produced in this work were confirmed using gas chromatography-mass spectroscopy analysis. Each of these products has its own delicately different fresh odor that can be used in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hatanaka, A., Sekiya, J., and Kajiwara, T. (1978), Phytochemistry 17, 869–872.

    Article  CAS  Google Scholar 

  2. Sekiya, J., Kajiwara, T., Munechika, K., and Hatanaka, A. (1983), Phytochemistry 22, 1867–1869.

    Article  CAS  Google Scholar 

  3. Hatanaka, A. (1993), Phytochemistry 34, 1201–1218.

    Article  CAS  Google Scholar 

  4. Gardner, H. W. (1995), HortScience 30, 197–204.

    CAS  Google Scholar 

  5. Gargouri, M. (2001), in Recent Research Development in Oil Chemistry, vol. 5, Pandalai, S. G., ed., Transworld Research Network, Trivandrum, India, pp. 13–37.

    Google Scholar 

  6. Clark, G. S. (1990), Perfumer Flavorist 15, 47–52.

    CAS  Google Scholar 

  7. Brunerie, P. (1989), French patent 89, 12 901.

  8. Fauconnier, M. L., Perez, A. G., Sanz, C., and Marlier, M. (1997), J. Agric. Food Chem. 45, 4232–4236.

    Article  CAS  Google Scholar 

  9. Matsui, K., Toyota, H., Kajiwara, T., Kakuno, T., and Hatanaka, A. (1991), Phytochemistry 30, 2109–2113.

    Article  CAS  Google Scholar 

  10. Shibata, Y., Matsui, K., Kajiwara, T., and Hatanaka, A. (1995), Biochem. Biophys. Res. Commun. 207, 438–443.

    Article  PubMed  CAS  Google Scholar 

  11. Itoh, A. and Vick, B.A. (1999), Biochim. Biophys. Acta 1436, 531–540.

    PubMed  CAS  Google Scholar 

  12. Gardner, H. W. (1991), Biocheim. Biophys. Acta 1084, 221–239.

    CAS  Google Scholar 

  13. Hatanaka, A. (1996), Food Rev. Int. 12, 303–350.

    Article  CAS  Google Scholar 

  14. Kim, I. S. and Grosch, W. (1981), J. Agric. Food Chem. 29, 1220–1225.

    Article  CAS  Google Scholar 

  15. Gargouri, M. and Legoy, M. D. (1998), Biotechnol. Lett. 20, 23–26.

    Article  CAS  Google Scholar 

  16. Schreier, P. and Lorenz, G. (1982), Z. Naturforsch. 37c, 165–173.

    CAS  Google Scholar 

  17. Hatanaka, A., Kajiwara, T., Sekiya, J., and Inouye, S. (1982), Phytochemistry 21, 13–17.

    Article  CAS  Google Scholar 

  18. Vick, B. A. and Zimmerman, D. C. (1976), Plant Physiol. 57, 780–788.

    Article  PubMed  Google Scholar 

  19. Gargouri, M., Drouet, P., and Legoy, M. D. (2004), J. Biotechnol. 111, 59–65.

    Article  PubMed  CAS  Google Scholar 

  20. Galliard, T. and Phillips, D. R. (1976), Biochim. Biophys. Acta 431, 278–287.

    PubMed  CAS  Google Scholar 

  21. Matsui, K., Shibata, Y., Kajiwara, T., and Hatanaka, A. (1989), Z. Naturforsch. 44c, 883–885.

    Google Scholar 

  22. Matoba, T., Sakura, A., Taninoki, N., Saitoh, T., Kariya, F., Kuwahata, M., Yukawa, N., Fujino, S., and Hasegawa, K. (1989), J. Food Sci. 54, 1607–1610.

    Article  CAS  Google Scholar 

  23. Legoy, M. D., Kim, H. S., and Thomas, D. (1985), Process Biochem. 20, 145–148.

    CAS  Google Scholar 

  24. Lortie, R., Villaume, I., Legoy, M. D., and Thomas, D. (1989), Biotechnol. Bioeng. 33, 229–232.

    Article  CAS  Google Scholar 

  25. Branden, C. V., Jornvall, H., Eklund, H., and Furugren, B. (1975), in The Enzymes, 3rd ed., vol. 11, Boyer, P. D., ed., Academic Press, New York, pp. 103–187.

    Google Scholar 

  26. Hatanaka, A., Kajiwara, T., and Harada, T. (1975), Phytochemistry 14, 2589–2592.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Gargouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gargouri, M., Akacha, N.B. & Legoy, MD. Coupled hydroperoxide lyase and alcohol dehydrogenase for selective synthesis of aldehyde or alcohol. Appl Biochem Biotechnol 119, 171–180 (2004). https://doi.org/10.1385/ABAB:119:2:171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:119:2:171

Index Entries

Navigation