Applied Biochemistry and Biotechnology

, Volume 119, Issue 2, pp 159–170 | Cite as

Optimization of medium by orthogonal matrix method for submerged mycelial culture and exopolysaccharide production in Collybia maculata

  • Jong Min Lim
  • Sang Woo Kim
  • Hye Jin Hwang
  • Ji Hoon Joo
  • Hyun Oh Kim
  • Jang Won Choi
  • Jong Won Yun
Original Articles


Optimization of submerged culture conditions for the production of mycelial growth and exopolysaccharides (EPSs) by Collybia maculata was investigated. The optimum temperature and the initial pH for EPS production in a shake-flask culture of C. maculata were found to be 20°C and 5.5, respectively. Among the various medium’s constituents examined, glucose, Martone A-1, K2HPO4, and CaCl2 were the most suitable carbon, nitrogen, and mineral sources for EPS production, respectively. The optimum concentration of the medium’s ingredients determined using the orthogonal matrix method was as follows: 30 g/L of glucose, 20 g/L of Martone A-1, 1g/L of K2HPO4, and 1g/L of CaCl2. Under the optimized culture conditions, the maximum concentration of EPSs in a 5-L stirred-tank reactor was 2.4 g/L, which was approximately five times higher than that in the basal medium. A comparative fermentation result showed that the EPS productivity in an airlift reactor was higher than that in the stirred-tank reactor despite the lower mycelial growth rate. The specific productivities and the yield coefficients in the airlift reactor were higher than those in the stirred-tank reactor even though the volumetric productivities were higher in the stirred-tank reactor than in the airlift reactor.

Index Entries

Collybia maculata exopolysaccharide optimization orthogonal matrix method submerged culture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berovic, M., Habijanic, J., Zore, I., Wraber, B., Hodzar, D., Boh, B., and Pohleven, F. (2003), J. Biotechnol. 103, 77–86.PubMedGoogle Scholar
  2. 2.
    Bok, J. W., Lermer, L., Chilton, J., Kilingeman, H. G., and Neil Towers, G. H. (1999), Phytochemistry 51, 891–898.PubMedCrossRefGoogle Scholar
  3. 3.
    Nam, K. S., Jo, Y. S., Kim, Y. H., Hyun, J. W., and Kim, H. W., (2001), Life Sci. 35, 229–237.CrossRefGoogle Scholar
  4. 4.
    Cheung, L. M., Cheung, P. K., and Ooi, V. C. (2003), Food Chem. 81, 249–255.CrossRefGoogle Scholar
  5. 5.
    Han, M. D., Lee, J. W., Jeong, H., Chung, S. K., Lee, S. Y., and Yoon, K. H. (1995), Kor. J. Mycol. 23, 209–225.Google Scholar
  6. 6.
    Shiao, M. S., Lee, K. R., Lin, L. J., and Wang, C. T. (1994), in Food Phytochemicals for Cancer Prevention II, American Chemical Society, Washington, DC, pp. 342–354.Google Scholar
  7. 7.
    White, R. W., Hackman, R. M., Soares, S. E., Beckett, L. A., and Sun, B. (2002), Urology 60, 640–644.CrossRefGoogle Scholar
  8. 8.
    Azam, M., Kesarwani, M., Natarajan, K., and Datta, A. (2001), Biochem. Biophys. Res. Commun. 289, 807–812.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuehnelt, D., Goessler, W., and Lrgolic, K. J. (1997), Appl. Organomet. Chem. 11, 289–296.CrossRefGoogle Scholar
  10. 10.
    Kim, S. W., Hwang, H. J., Xu, C. P., Choi, J. W., and Yun, J. W. (2003), Lett. Appl. Microbiol. 36, 321–326.PubMedCrossRefGoogle Scholar
  11. 11.
    Biazar, J., Tango, M., Babolian, E., and Islam, R. (2003), Appl. Math. Comput. 144, 433–439.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Park, J. P., Kim, S. W., Hwang, H. J., and Yun, J. W. (2001), Lett. Appl. Microbiol. 33, 76–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang, F. C., and Liau, C. B. (1998), Bioprocess Eng. 19, 233–236.Google Scholar
  14. 14.
    Kim, S. W., Hwang, H. J., Xu, C. P., Na, Y. S., Song, S. K., and Yun, J. W. (2002), Lett. Appl. Microbiol. 34, 389–393.PubMedCrossRefGoogle Scholar
  15. 15.
    Cho, D. H., Chae, H. J., and Kim, E. Y. (2001), Appl. Biochem. Biotechnol. 95, 183–193.PubMedCrossRefGoogle Scholar
  16. 16.
    Bae, J. E., Sinha, J., Park, J. P., Song, C. H., and Yun, J. W. (2000), J. Microbiol. Biotechnol. 10, 482–487.Google Scholar
  17. 17.
    Griffin, D. H. (1994), Fungal Physiology, 2nd ed., Wiley-Liss, New York.Google Scholar
  18. 18.
    Jonathan, S. G. and Fasidi, I. O. (2001), Food Chem. 72, 479–483.CrossRefGoogle Scholar
  19. 19.
    Chardonnet, C. O., Sams, C. E., and Conway, W. S. (1999), Phytochemistry 25, 967–973.CrossRefGoogle Scholar
  20. 20.
    MacAtrain, P., Jacquier, J. C., and Dawson, K. A. (2003), Carbohydr. Polym. 53, 395–400.CrossRefGoogle Scholar
  21. 21.
    Xu, C. P., Kim, S. W., Hwang, H. J., Choi, J. W., and Yun, J. W. (2003), Process Biochem. 38, 1025–1030.CrossRefGoogle Scholar
  22. 22.
    He, Y. and Lee, H. K. (1998), J. Chromatogr. 793, 331–340.CrossRefGoogle Scholar
  23. 23.
    Huang, C. T., Su, Y. Y., and Hsieh, Y. Z. (2002), J. Chromatogr. 977, 9–16.CrossRefGoogle Scholar
  24. 24.
    Prihardi, K., Kengo, K., Toshiharu, I., Jun, H., Mami, K., and Mitsuyasu, O. (2002), J. Biosci. Bioeng. 93, 274–280.CrossRefGoogle Scholar
  25. 25.
    Emilio, M. G., Yusuf, C., and Murray, M. Y. (1997), J. Biotechnol. 54, 195–210.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Jong Min Lim
    • 1
  • Sang Woo Kim
    • 1
  • Hye Jin Hwang
    • 1
  • Ji Hoon Joo
    • 1
  • Hyun Oh Kim
    • 1
  • Jang Won Choi
    • 2
  • Jong Won Yun
    • 1
  1. 1.Department of BiotechnologyDaegu UniversityKyungsan, KyungbukKorea
  2. 2.Department of Natural ResourceDaegu UniversityKyungsan, KyungbukKorea

Personalised recommendations