Xylanase production by the thermophilic mold Humicola lanuginosa in solid-state fermentation

  • Pankaj Kamra
  • T. SatyanarayanaEmail author
Original Articles


Among the lignocellulosic substrates tested, wheat bran supported a high xylanase (EC secretion by Humicola lanuginosa in solid-state fermentation (SSF). Enzyme production reached a peak in 72 h followed by a decline thereafter. Enzyme production was very high (7832 U/g of dry moldy bran) when wheat bran was moistened with tap water at a substrate-to-moistening agent ratio of 1:2.5 (w/v) and an inoculum level of 3 × 106 spores/10 g of wheat bran at a water activity (a w ) of 0.95. Cultivation of the mold in large enamel trays yielded a xylanase titer comparable with that in flasks. Parametric optimization resulted in a 31% increase in enzyme production in SSF. Xylanase production was approx 23-fold higher in SSF than in submerged fermentation (SmF). A threshold constitutive level of xylanase was secreted by H. lanuginosa in a medium containing glucose as the sole carbon source. The enzyme was induced by xylose and xylan. Enzyme synthesis was repressed beyond 1.0% (w/v) xylose in SmF, whereas it was unaffected up to 3.0% (w/w) in SSF, suggesting a minimization of catabolite repression in SSF.

Index Entries

Humicola lanuginosa solid-state fermentation submerged fermentation wheat bran xylanase 


  1. 1.
    Kalogeris, E., Christakopoulos, P., Kekos, D., and Macris, B. J. (1998), J. Biotechnol. 60, 155–163.CrossRefGoogle Scholar
  2. 2.
    Bakri, Y., Jacques, P., and Thonart, P. (2003), Appl. Biochem. Biotechnol. 108, 737–48.CrossRefGoogle Scholar
  3. 3.
    Purkarthofer, H., Sinner, M., and Steiner, W. (1993), Enzyme Microb. Technol. 15, 677–682.CrossRefGoogle Scholar
  4. 4.
    Singh, S., Pillay, B., Dilsook, V., and Prior, B. A. (2000), J. Appl. Microbiol. 88, 975–982.PubMedCrossRefGoogle Scholar
  5. 5.
    Cannel, E. and Moo Young, M. (1980), Proc. Biochem. 15, 2–7.Google Scholar
  6. 6.
    Archana, A. and Satyanarayana, T. (1997), Enzyme Microb. Technol. 21(1), 12–17.CrossRefGoogle Scholar
  7. 7.
    Babu, K. R. and Satyanarayana, T. (1995), Proc. Biochem. 30, 305–309.CrossRefGoogle Scholar
  8. 8.
    Kyu, K. L., Ratanakhanokchai, K., Uttapap, D., and Tanticharoen, M. (1994), Biores. Technol. 48(2), 163–167.CrossRefGoogle Scholar
  9. 9.
    Maldonado, M. C. and Strasser de Saad, A. M. (1998), J. Ind. Microbiol. Biotechnol. 20, 34–38.PubMedCrossRefGoogle Scholar
  10. 10.
    Emerson, R. (1941), Lloydia 4, 77–144.Google Scholar
  11. 11.
    Roche, N., Desgranges, C., and Durand, A. (1994), J. Biotechnol. 38, 43–50.CrossRefGoogle Scholar
  12. 12.
    Satyanarayana, T. and Johri, B. N. (1983), Bionature 3, 39–41.Google Scholar
  13. 13.
    Archana, A. and Satyanarayana, T. (1998), Indian J. Microbiol. 38, 135–139.Google Scholar
  14. 14.
    Lowry, O. H., Roseburgh, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  15. 15.
    Grajek, W. and Gervais, P. (1987), Enzyme Microb. Technol. 9, 658–662.CrossRefGoogle Scholar
  16. 16.
    Okeke, B. C. and Obi, S. K. C. (1995), Biores. Technol. 51, 23–27.CrossRefGoogle Scholar
  17. 17.
    Lemos, J. L., Fontes, M. C., and Pereira, N. Jr. (2003), Appl. Biochem. Biotechnol. 93, 681–689.CrossRefGoogle Scholar
  18. 18.
    Kitpreechavanich, V. (1984), J. Ferment. Technol. 62, 63–69.Google Scholar
  19. 19.
    Gessesse, A. and Mamo, G. (1999), Enzyme Microb. Technol. 25(1–2), 28–72.Google Scholar
  20. 20.
    Hoq, M. M. and Deckwer, W. D. (1995), Appl. Microbiol. Biotechnol. 43, 604–609.CrossRefGoogle Scholar
  21. 21.
    Feniksova, R. V., Tikhomrova, A. S., and Rakhleeva, B. E. (1960), Mikrobiologica 29, 745–748.Google Scholar
  22. 22.
    Kirk, T. K., Jeffries, T. W., and Leathem, G. F. (1983), TAPPI 66, 45–51.Google Scholar
  23. 23.
    Cai, J., Wu, K., Zhang, J., He, X., and Pang, R. (1997), Ind. Microbiol. 27(2), 1–4.Google Scholar
  24. 24.
    Lonsane, B. K. and Ramesh, M. V. (1990), Adv. Appl. Microbiol. 35, 1–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Onilude, A. A. (1996), J. Basic Microbiol. 36(6), 421–431.PubMedCrossRefGoogle Scholar
  26. 26.
    Betts, W. B., Dart, R. K., and Ball, M. C. (1988), Trans. Br. Mycol. Soc. 91, 227–232.CrossRefGoogle Scholar
  27. 27.
    Zadrazil, F. and Brunnert, H. (1982), Eur. J. Appl. Microbiol. Biotechnol. 16, 45–51.CrossRefGoogle Scholar
  28. 28.
    Battaglino, R. A., Huegro, M., Pilosof, A. M. R., and Bartholomai, G. B. (1991), Appl. Microbiol. Biotechnol. 35, 292–296.CrossRefGoogle Scholar
  29. 29.
    Thakur, M. S., Karanath, N. G., and Nand, K. (1990), Appl. Microbiol. Biotechnol. 32, 409–413.CrossRefGoogle Scholar
  30. 30.
    Solis-Pereira, S., Favela-Torres, F., Viniegra-Gonzalez, G., and Gutierrez-Rojas, M. (1993), Appl. Microbiol. Biotechnol. 39, 36–41.Google Scholar
  31. 31.
    Ball, A. S. and McCarthy, A. J. (1988), J. Appl. Bacteriol. 66, 439–444.Google Scholar
  32. 32.
    Gawande, P. V. and Kamat, M. Y. (1999), J. Appl. Microbiol. 87(5), 511–519.PubMedCrossRefGoogle Scholar
  33. 33.
    Souza, M. C. O., Roberto, I. C., and Milegres, A. M. F. (1999), Appl. Microbiol. Biotechnol. 52(62), 768–772.CrossRefGoogle Scholar
  34. 34.
    Gutierrez, C. M. and Tengerdy, R. P. (1998), Biotechnol. Lett. 20(1), 45–47.CrossRefGoogle Scholar
  35. 35.
    Narang, S., Sahai, V., and Bisaria, V. S. (2001), J. Biosci. Bioeng. 9(4), 425–427.CrossRefGoogle Scholar
  36. 36.
    Szakaes, G., Tengerdy, R. P., Urbanszki, K., Carrillo, J. C., and Sugar, E. (1999), Abstr. Am. Chem. Soc. 217.Google Scholar
  37. 37.
    Park, Y. S., Kang, S. W., Lee, J. S., Hong, S. I., and Kim, S. W. (2002), Appl. Microbiol. Biotechnol. 58(6), 761–766.PubMedCrossRefGoogle Scholar
  38. 38.
    Dos Santos, E., Piovan, T., Roberto, I. C., and Milagres, A. M. (2003), Biotechnol. Lett. 25(1), 13–16.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations