Advertisement

Applied Biochemistry and Biotechnology

, Volume 119, Issue 2, pp 133–143 | Cite as

Capacity of Bacillus thuringiensis S-layer protein displaying polyhistidine peptides on the cell surface

  • Li Wang
  • Ming SunEmail author
  • Ziniu Yu
Original Articles

Abstract

S-layer protein of Bacillus thuringiensis strain CTC was used as the carrier protein to display polyhistidine (poly[6His]) peptides on the cell surface. Poly(6His) n was fused with S-layer protein at two different sites, inserting just downstream of the S-layer protein homologous domain (slh) and replacing the non-slh region of S-layer protein, respectively. The two series chimeric proteins were both expressed by crystal negative B. thuringiensis strain 4Q7 and strain 171, respectively, as shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The recombinant B. thuringiensis cells gained Ni2+- and Cd2+-binding ability and had a capacity to display up to nine copies of poly(6His). The Cd2+ adsorption quantity of the recombinant strain with the strongest adsorption ability was twice that of the host strain.

Index Entries

Bacillus thuringiensis cell-surface display S-layer protein polyhistidine csaAB operon ctc gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sára, M. and Sleytr, U. B. (2000), J. Bacteriol. 182, 859–868.PubMedCrossRefGoogle Scholar
  2. 2.
    Sleytr, U. B., Messner, P., Pum, D., and Sára, M. (1999), Angew. Chem. Int. Ed. 38, 1034–1054.CrossRefGoogle Scholar
  3. 3.
    Mesnage, S., Fontaine, T., Mignot, T., Delepierre, M., Mock, M., and Fouet, A. (2000), EMBO J. 17, 4473–4484.CrossRefGoogle Scholar
  4. 4.
    Umelo-Njaka, E., Nomellini, J. F., Bingle, W. H., Glasier, L. G., Irvin, R. T., and Smit, J. (2001), Vaccine 19, 1406–1415.PubMedCrossRefGoogle Scholar
  5. 5.
    Mesnage, S., Tosi-Couture, E., and Fouet, A. (1999), Mol. Microbiol. 31, 927–936.PubMedCrossRefGoogle Scholar
  6. 6.
    Sousa, C., Cebolla, A., and Lorenzo, V. D. (1996), Nat. Biotechnol. 14, 1017–1021.PubMedCrossRefGoogle Scholar
  7. 7.
    Xu, Z. H. and Lee, S. Y. (1999), Appl. Environ. Microbiol. 65, 5142–5147.PubMedGoogle Scholar
  8. 8.
    Samuelson, P., Wernerus, H., Svedberg, M., and Stahl, S. (2000), Appl. Environ. Microbiol. 66, 1243–1248.PubMedCrossRefGoogle Scholar
  9. 9.
    Sun, M., Zhu, C.-G., and Yu, Z.-N. (2000), Acta Microbiol. Sin. 41, 141–147 (in Chinese).Google Scholar
  10. 10.
    Mesnage, S., Haustant, M., and Fouet, A. (2001), Microbiology 147, 1343–1351.PubMedGoogle Scholar
  11. 11.
    Etienne-Toumelin, I., Sirard, J. C., Duflot, E., Mock, M., and Fouet, A. (1995), J. Bacteriol. 177, 614–620.PubMedGoogle Scholar
  12. 12.
    Li, L. and Yu, Z.-N. (1999), Chin. J. Appl. Environ. Biol. 5, 395–399 (in Chinese).Google Scholar
  13. 13.
    Schurter, W., Geiser, M., and Mathe, D. (1989), Mol. Gen. Genet. 218, 177–181.PubMedCrossRefGoogle Scholar
  14. 14.
    Janssen, G. R. and Bibb, M. J. (1993), Gene 124, 133, 134.PubMedCrossRefGoogle Scholar
  15. 15.
    Arantes, B. and Lereclus, D. (1991), Gene 108, 115–119.PubMedCrossRefGoogle Scholar
  16. 16.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  17. 17.
    Mesnage, S., Weber-Levy, M., Haustant, M., Mock, M., and Fouet, A. (1999), Infect. Immun. 67, 4847–4850.PubMedGoogle Scholar
  18. 18.
    Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., and Dean, D. H. (1998), Microbiol. Mol. Biol. Rev. 62, 775–806.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.College of Life Science and TechnologyHuazhong Agricultural University, State-Key Laboratory of Agricultural MicrobiologyWuhanPeople’s Republic of China

Personalised recommendations