Advertisement

Applied Biochemistry and Biotechnology

, Volume 119, Issue 2, pp 97–120 | Cite as

Identification of microbial inhibitory functional groups in corn stover hydrolysate by carbon-13 nuclear magnetic resonance spectroscopy

  • F. A. AgblevorEmail author
  • J. Fu
  • B. Hames
  • J. D. McMillan
Original Articles

Abstract

Dilute-acid biomass hydrolysates contain biomass degradation products that are inhibitory to cell growth and fermentation. Overliming with Ca(OH)2 has been found to be one of the most effective methods for detoxifying the dilute-acid hydrolysate for ethanol production. However, the mechanism of overliming is not well understood. Carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy was used to elucidate the functional groups involved in the overliming reaction. The 13C-NMR spectra showed that the major functional groups removed during the overliming process were aliphatic and aromatic acids or esters, and other aromatic and aliphatic compounds. Ketone and aldehyde functionalities were not detected in the spectra. This is the first time that 13C-NMR has been used to elucidate the overliming reaction.

Index Entries

Overliming inhibition corn stover hydrolysate carbon-13 nuclear magnetic resonance acetone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Technology Roadmaps for Plant/Crop-Based Renewable Resources 2020. DOE/GO-10099-706, February 1999. http://www.oit.doe.gov/agriculture.Google Scholar
  2. 2.
    Committee on Biobased Industrial Products. (1999), Biobased Industrial Products, Priorities for Research and Commercialization, National Academy Press, Washington, DC.Google Scholar
  3. 3.
    Hettenhaus, J., Wooley, R., and Ashworth, J. (2002), Final Report, National Renewable Energy Laboratory, contract no. ACO-1-31108-01, Golden, CO.Google Scholar
  4. 4.
    Tran, A. V. and Chambers, R. P. (1985), Biotechnol. Lett. 7, 841–846.CrossRefGoogle Scholar
  5. 5.
    McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, ACS symposium series 566, Himmel, M. E., Baker, J. O., and Overend, R. P., eds., American Chemical Society, Washington, DC, Chapter 21.Google Scholar
  6. 6.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Biotechnol. Lett. 19(11), 1125–1127.CrossRefGoogle Scholar
  7. 7.
    Palmqvist, E. and Hahn-Hargerdal, B. (2000), Bioresour. Technol. 74, 17–24.CrossRefGoogle Scholar
  8. 8.
    Luo, C., Brink, D. L., and Blanch, H. W. (2002), Biomass Bioenergy 22, 125–138.CrossRefGoogle Scholar
  9. 9.
    Larsson, S., Reiman, A., Nilvebrant, N.-O., and Jonsson, L. J. (1999), Appl. Biochem. Biotechnol. 77/79, 91–103.CrossRefGoogle Scholar
  10. 10.
    Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., and Ingram, L. O. (2001), Biotechnol. Prog. 17, 287–293.PubMedCrossRefGoogle Scholar
  11. 11.
    Olsson, L., Hahn-Hagerdal, B., and Zacchi, G. (1995), Biotechnol. Bioeng. 45, 356–365.CrossRefGoogle Scholar
  12. 12.
    Roberto, I. C., Lacis, L. S., Barbosa, M. F. S., and de Mancilha, I. M. (1991), Process Biochem. 26, 15–21.CrossRefGoogle Scholar
  13. 13.
    Mes-Hartree, M. and Saddler, J. N. (1983), Biotechnol. Lett. 5, 531–536.CrossRefGoogle Scholar
  14. 14.
    Jonsson, L. J., Palmqvist, E., and Nilvebrant, N.-O. (1998), Appl. Microbiol. Biotechnol. 49, 691–697.CrossRefGoogle Scholar
  15. 15.
    Fenske, J. J., Griffin, D. A., and Penner, M. H. (1998), J. Ind. Microbiol. Biotechnol. 20, 364–368.CrossRefGoogle Scholar
  16. 16.
    Klinke, H. B., Thomsen, A. B., and Ahring, B. K. (2001), Appl. Microbiol. Biotechnol. 57, 631–638.PubMedCrossRefGoogle Scholar
  17. 17.
    Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., and Ingram, L. O. (2000), Biotechnol. Prog. 16, 637–641.PubMedCrossRefGoogle Scholar
  18. 18.
    Buhner, J. (2001), MS thesis, Technical University of Dresden, Germany.Google Scholar
  19. 19.
    Scalbert, A., Monties, B., Guittet, E., and Lallemand, J. Y. (1986), Holzforschung 40, 119–127.Google Scholar
  20. 20.
    Nimz, H. H., Robert, D., Faix, O., and Nemr, M. (1981), Holzforschung 35, 16–26.CrossRefGoogle Scholar
  21. 21.
    McElroy, R. D. and Lai, K. (1988), J. Wood Chem. Technol. 8(3), 361–378.Google Scholar
  22. 22.
    Scalbert, A., Monties, B., Lallemand, J. Y., Guittet, E., and Rolando, C. (1985), Phytochemistry 24(6), 1359–1362.CrossRefGoogle Scholar
  23. 23.
    Lawther, J. M., Sun, R.-C., and Banks, W. B. (1996), J. Wood Chem. Technol. 16(4), 439–457.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • F. A. Agblevor
    • 1
    Email author
  • J. Fu
    • 2
  • B. Hames
    • 2
  • J. D. McMillan
    • 2
  1. 1.Department of Biological Systems EngineeringVirginia Polytechnic Institute and State UniversityBlacksburg
  2. 2.Biotechnology DivisionNational Renewable Energy LaboratoryGolden

Personalised recommendations