Skip to main content
Log in

Effect of ion and surfactant choice on the recovery of a histidine-tagged protein from tobacco extract using foam fractionation

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tobacco plants can be used for the production of proteins for pharmaceutical applications. One of the most difficult and expensive tasks associated with this technology is isolating the product of interest from the hundreds of other chemicals found in tobacco. We describe a new recovery strategy in which the protein of interest is “tagged” with a histidine structure, which forms a complex with metal ions and a surfactant that will accumulate in the foamate of a foam fractionation step. His-gus, a histidine-tagged enzyme, was selectively recovered in the presence of two different surfactants and two different metal ions. The foam fractionation with N-∈-dodecylamido-N-α, N-α,-bis(carboxymethyl)-l-lysine surfactant and Ni2+ ions resulted in an average His-gus activity recovery value of 88% and an activity enrichment of 2.27. The performance of the recovery strategy without tobacco extract resulted in an average activity recovery value of 63.32% and an average activity enrichment value of 5.16, utilizing lauroylethylenediaminetriacetate surfactant and Ni2+ ions. It was shown that even though a majority of the native tobacco proteins are removed during the prefoaming step, the presence of tobacco extract does affect the recovery of His-gus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kusnadi, A. R., Nikolov, Z. L., and Howard, J. A. (1997), Biotechnol. Bioeng. 56, 473–484.

    Article  CAS  Google Scholar 

  2. Boothe, J. G., Saponja, J. A., and Parmenter, D. L. (1997), Drug Dev. Res. 42, 172–181.

    Article  CAS  Google Scholar 

  3. Cramer, C. L., Boothe, J. G., and Oishi, K. K. (1999), Curr. Top. Microbiol. 240, 95–119.

    CAS  Google Scholar 

  4. Uraizee, F. and Narsimhan, G. (1996), Biotechnol. Bioeng. 51, 384–398.

    Article  CAS  Google Scholar 

  5. Lockwood, C. E., Bummer, P. M., and Jay, M. (1997), Pharm. Res. 14, 1511–1515.

    Article  PubMed  CAS  Google Scholar 

  6. Brown, A. and Valey, K. (1999), Biotechnol. Bioeng. 62, 278–280.

    Article  PubMed  CAS  Google Scholar 

  7. Ko, S., Loha, V., Prokop, A., and Tanner, R. D. (1998), Appl. Biochem. Biotechnol. 70–72, 547–558.

    PubMed  Google Scholar 

  8. Chai, J., Loha, V., and Prokop, A. (1998), J. Agric. Food Chem. 46, 2868–2873.

    Article  CAS  Google Scholar 

  9. Lockwood, C. E., Jay, M. E., and Bummer, P. M. (2000), J. Pharm. Sci. 89, 693–704.

    Article  PubMed  CAS  Google Scholar 

  10. Loha, V., Prokop, A., Du, L., and Tanner, R. D. (1999), Appl. Biochem. Biotechnol. 77–79, 701–712.

    Article  PubMed  Google Scholar 

  11. Varley, J. and Ball, S. K. (1994), Separat. Biotechnol. 158, 525–531.

    CAS  Google Scholar 

  12. Chen, S., Timmons, M. B., Bisogni, J. J., and Aneshansley, D. (1994), Aquacult. Eng. 13, 163–183.

    Article  CAS  Google Scholar 

  13. Brown, A. K., Kaul, A., and Varley, J. (1999), Biotechnol. Bioeng. 62, 291–300.

    Article  PubMed  CAS  Google Scholar 

  14. Uraizee, F. and Narsimhan, G. (1990), Enzyme Microb. Technol. 12, 315, 316.

    Article  PubMed  CAS  Google Scholar 

  15. DeSouza, A. H., Tanner, R. D., and Effler, W. T. (1991), Appl. Biochem. Biotechnol. 28/29, 655–666.

    Article  Google Scholar 

  16. Walker, P. A., Leong, L. E. C., Ng, P. W. P., Tan, S. H., Waller, S., Murphy, D., and Porter, A. G. (1994), Bio-Technology 12, 601–605.

    PubMed  CAS  Google Scholar 

  17. Cordingley, M. G., Callahan, P. L., Sardana, V. V., Garsky, V. M., and Colonno, R. J. (1990), J. Biol. Chem. 265, 9062–9065.

    PubMed  CAS  Google Scholar 

  18. Crofcheck, C., Loiselle, M., Weekley, J., Maiti, I., Pattanaik, S., Bummer, P. M., and Jay, M. (2003), Biotechnol. Prog. 19, 680–682.

    Article  PubMed  CAS  Google Scholar 

  19. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning: A Laboratory Mannal, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  20. Agatep, R., Kirkpatrick, R. D., Parchaliuk, D. L., Woods, R. A., and Gietz, R. D. (1998), Technical Tips Online (http://tto.trends.com).

  21. Guthrie, C. and Fink, G. R. (1991), Guide to Yeast Genetics and Molecular Biology, Academic, New York.

    Book  Google Scholar 

  22. Lige, B., Ma, S., Zhao, D., and van Huystee, R. B. (1998), Plant Sci. 136, 159–168.

    Article  CAS  Google Scholar 

  23. Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  24. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987), J. Cell. Biochem. 57-57.

  25. Schmeltz, I. and Hoffmann, D. (1977), Chem. Rev. 77, 295–311.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Czarena Crofcheck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crofcheck, C., Maiti, I., Pattanaik, S. et al. Effect of ion and surfactant choice on the recovery of a histidine-tagged protein from tobacco extract using foam fractionation. Appl Biochem Biotechnol 119, 79–91 (2004). https://doi.org/10.1385/ABAB:119:1:79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:119:1:79

Index Entries

Navigation