Advertisement

Applied Biochemistry and Biotechnology

, Volume 118, Issue 1–3, pp 155–170 | Cite as

Lipases and their industrial applications

An overview
  • Alain Houde
  • Ali Kademi
  • Danielle Leblanc
Article

Abstract

Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3) are part of the family of hydrolases that act on carboxylic ester bonds. The physiologic role of lipases is to hydrolyze triglycerides into diglycerides, monoglycerides, fatty acids, and glycerol. These enzymes are widely found throughout the animal and plant kingdoms, as well as in molds and bacteria. Of all known enzymes, lipases have attracted the most scientific attention. In addition to their natural function of hydrolyzing carboxylic ester bonds, lipases can catalyze esterification, interesterification, and transesterification reactions in nonaqueous media. This versatility makes lipases the enzymes of choice for potential applications in the food, detergent, pharmaceutical, leather, textile, cosmetic, and paper industries. The most significant industrial applications of lipases have been mainly found in the food, detergent, and pharmaceutical sectors. Limitations of the industrial use of these enzymes have mainly been owing to their high production costs, which may be overcome by molecular technologies, enabling the production of these enzymes at high levels and in a virtually purified form.

Index Entries

Lipases industrial applications detergent protein engineering rational protein design directed evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirk, O., Borchert, T. V., and Fuglsang, C. C. (2002), Curr. Opin. Biotechnol. 13, 345–351.PubMedCrossRefGoogle Scholar
  2. 2.
    Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., and Soccol, V. (1999), Biotechnol. Appl. Biochem. 29, 119–131.PubMedGoogle Scholar
  3. 3.
    Osborn, H. T. and Akoh, C. C. (2002), Compr. Rev. Food Sci. Food Safety 3, 93–103.Google Scholar
  4. 4.
    Sarda, L. and Desnuelle, P. (1958), Biochim. Biophys. Acta 30, 513–521.PubMedCrossRefGoogle Scholar
  5. 5.
    Veger, R. (1997), Trends Biotechnol. 15, 32–38.CrossRefGoogle Scholar
  6. 6.
    Jaeger, K.-E., Dijkstra, B. W., and Reetz, M. T. (1999), Annu. Rev. Microbiol. 53, 315–351.PubMedCrossRefGoogle Scholar
  7. 7.
    Verger, R., Mieras, M. C. E., and de Haas, G. H. (1973), J. Biol. Chem. 248, 4023–4034.PubMedGoogle Scholar
  8. 8.
    Verger, R. and de Haas, G. H. (1976), Annu. Rev. Biophys. Bioeng. 5, 77–117.PubMedCrossRefGoogle Scholar
  9. 9.
    Kademi, A., Leblanc, D., and Houde, A. (2004), in Concise Encyclopedia of Bioresource Technology, Pandey, A., ed., Haworth Press, Binghamton, NY, pp. 552–560.Google Scholar
  10. 10.
    Yang, T., Xu, X., He, H., and Li, L. (2003), Food Chem. 80, 473–481.CrossRefGoogle Scholar
  11. 11.
    Balcao, V. M. and Malcata, F. X. (1998), Biotechnol. Adv. 16(2), 309–341.PubMedCrossRefGoogle Scholar
  12. 12.
    Pszczola, D. E. (2001), Food Technol. 55, 54–64.Google Scholar
  13. 13.
    Hosoya, N. and Hirahara, T. (2002), Business Briefing: Innovative Food Ingredients, World Markets Research Center, Retrieved from www.wmrc.com.Google Scholar
  14. 14.
    Akoh, C. C. and Yee, L. N. (1997), J. Am. Oil Chem. Soc. 74, 1409–1413.Google Scholar
  15. 15.
    Kanjilal, S., Prasad, R. B. N., Kaimal, T. N. B., and Ghaforunissa, R. S. H. (1999), Lipids 34, 1045–1055.PubMedCrossRefGoogle Scholar
  16. 16.
    Kheadr, E. E., Vuillemard, J. C., and El-Deeb, A. A. (2002), J. Food Sci. 67, 485–492.CrossRefGoogle Scholar
  17. 17.
    Kheadr, E. E., Vuillemard, J. C., and El-Deeb, A. A. (2003), Food Res. Int. 36, 241–252.CrossRefGoogle Scholar
  18. 18.
    Kilcawley, K. N., Wilkinson, M. G., and Fox, P. F. (1998), Int. Dairy J. 8, 1–10.CrossRefGoogle Scholar
  19. 19.
    Han, X.-Q., Silver, R. S., and Brown, P. H. (1999), US patent 6251445.Google Scholar
  20. 20.
    Godfrey, T. and West, S. (1996), in Industrial Enzymology, 2nd ed., Godfrey, T. and West, S., eds., Stockton Press, New York, pp. 1–8.Google Scholar
  21. 21.
    Bonrath, W., Karge, R., and Netscher, T. (2002), J. Mol. Catal. B: Enzymatic 19–20, 67–72.CrossRefGoogle Scholar
  22. 22.
    Anonymous. (May 29, 1998), The Cancer Letter vol. 24, no. 21.Google Scholar
  23. 23.
    Patel, R. N. (1998), Annu. Rev. Microbiol. 98, 361–395.CrossRefGoogle Scholar
  24. 24.
    The Hindu Bureau (January 4, 2003) Dr. Reddy’s ships generic ibuprofen to America. The Hindu, Business Line Internet Edition, Retrieved from www.thehindubusinessline.com/bline/2003/01/04/stories/2003010401600200.htm.Google Scholar
  25. 25.
    Sharma, R., Chisti, Y., and Banerjee, U. C. (2001), Biotechnol. Adv. 19, 627–662.PubMedCrossRefGoogle Scholar
  26. 26.
    Anonymous. AU-KBC Research Centre Web site: www.au-kbc.org.Google Scholar
  27. 27.
    Anonymous. Novozymes Web site: www.novozymes.com.Google Scholar
  28. 28.
    Schmidt-Dannert, C. (1999), Bioorg. Med. Chem. 7, 2123–2130.PubMedCrossRefGoogle Scholar
  29. 29.
    Kademi, A., Lee, B., and Houde, A. (2003), Indian J. Biotechnol. 2, 346–355.Google Scholar
  30. 30.
    Anonymous. Meristeem Therapeutics Web site: www.meristem-therapeutics.com/GB/lipase.htm.Google Scholar
  31. 31.
    Bornscheuer, U. T., Bessler, C., Srinivas, R., and Krishna, S. H. (2002), Trends Biotechnol. 20, 1–5.CrossRefGoogle Scholar
  32. 32.
    Villeneuve, P., Muderhwa, J. M., Graille, J., and Haas, M. J. (2000), J. Mol. Catal. B: Enzymatic 9, 113–148.CrossRefGoogle Scholar
  33. 33.
    Bornscheuer, U. T. and Pohl, M. (2001), Curr. Opin. Chem. Biol. 5, 137–143.PubMedCrossRefGoogle Scholar
  34. 34.
    Winkler, F. K., D’Arcy, A., and Hunziker, W. (1990), Nature 343, 771–774.PubMedCrossRefADSGoogle Scholar
  35. 35.
    Derewenda, Z. S., Derewenda, U., and Dodson, G. G. (1992), J. Mol. Biol. 227, 818–839.PubMedCrossRefGoogle Scholar
  36. 36.
    Fischer, M. and Pleiss, J. (2003), Nucleic Acids Res. 31, 319–321.PubMedCrossRefGoogle Scholar
  37. 37.
    Kuchner, O. and Arnold, F. H. (1997), Trends Biotechnol. 15, 523–530.PubMedCrossRefGoogle Scholar
  38. 38.
    Rottici, D., Rotticci-Mulder, J. C., Denman, S., Norin, T., and Hult, K. (2001), Chem. Biol. Chem. 2, 766–770.Google Scholar
  39. 39.
    Magnusson, A., Hult, K., and Holmquist, M. (2001), J. Am. Chem. Soc. 123, 4354, 4355.PubMedCrossRefGoogle Scholar
  40. 40.
    Cadwell, R. C. and Joyce, G. F. (1992), PCR Methods Applic. 2, 28–33.Google Scholar
  41. 41.
    Stemmer, W. P. C. (1994), Proc. Natl. Acad. Sci. USA 91, 10,747–10,751.CrossRefGoogle Scholar
  42. 42.
    Volkov, A. A., Shao, Z., and Arnold, F. H. (1999), Nucleic Acids Res. 27, e18i-vi.CrossRefGoogle Scholar
  43. 43.
    Ostermeier, M., Nixon, A. E., and Bencovic, S. J. (1999), Bioorg. Med. Chem. 7, 2139–2144.PubMedCrossRefGoogle Scholar
  44. 44.
    Shao, Z., Zhao, H., Giver, L., and Arnold, F. H. (1998), Nucleic Acids Res. 26, 681–683.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhao, H., Giver, L., Shao, Z., Affholter, J. A., and Arnold, F. H. (1998), Nat. Biotechnol. 16, 258–261.PubMedCrossRefGoogle Scholar
  46. 46.
    Jaeger, K.-E., Eggert, T., Eipper, A., and Reetz, M. T. (2001), Appl. Microbiol. Biotechnol. 55, 519–530.PubMedCrossRefGoogle Scholar
  47. 47.
    Kauffmann, I. and Schmidt-Dannert, C. (2001), Protein Eng. 14, 919–928.PubMedCrossRefGoogle Scholar
  48. 48.
    Van Kampen, M. D. and Egmond, M. R. (2000), Eur. J. Lipid Sci. Technol. 102, 717–726.CrossRefGoogle Scholar
  49. 49.
    Danielsen, S., Eklund, M., Deussen, H. J., Gräslund, T., Nygren, P.-Å., and Borchert, T. V. (2001), Gene 272, 267–274.PubMedCrossRefGoogle Scholar
  50. 50.
    Reetz, M. T., Becker, M. H., Klein, H.-W., and Stöckigt, D. (1999), Angew. Chem. Int. Ed. 38, 1758–1761.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Agriculture and Agri-Food CanadaFood Research and Development CentreSt-HyacintheCanada

Personalised recommendations