Skip to main content
Log in

Characterization of metabolic pathway of linoleic acid 9-hydroperoxide in cytosolic fraction of potato tubers and identification of reaction products

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Potato tubers are shown to contain a unique lipoxygenase pathway to form 9-hydroperoxy-10,12-octadecadienoic acid (9-HPODE) from linoleic acid. Here, we report the metabolic pathway of 9-HPODE in the cytosolic fraction and the characterization of enzymes involved in the conversion of metabolites. The analysis of enzymatic reaction products at pH 5.5 revealed the formation of 9-keto-10,12-octadecadienoic acid, 9-hydroxy-10,12-octadecadienoic acid, 9,10-epoxy-11-hydroxy-12-octadecenoic acid, 9,10,13-trihydroxy-11-octadecenoic acid, and 9,12,13-trihydroxy-10-octadecenoic acid. The cytosolic enzymes were separated by anion-exchange chromatography into two fractions E1 and E2, having molecular masses of 66 and 54 kDa, respectively. The enzyme fraction E1 only produced 9-keto-10,12-octadecadienoic acid, whereas E2 formed other products. The enzyme E1 showed higher reactivity with 13- and 9-hydroperoxide of α-linolenic acid than 9-HPODE, but no reaction with hydroxy fatty acids. In contrast, the enzyme E2 showed the highest reactivity with 9-HPODE, followed by hydroperoxides of α-linolenic acid and arachidonic acid. We also evaluated the antibacterial activity of hydroxy fatty acids against Erwinia carotovora T-29, a bacterium infecting potato tubers. Growth of the bacteria was suppressed more potently with 9- or 13-hydroxy fatty acids than dihydroxy or trihydroxy fatty acids, suggesting a role for the metabolites in the resistance of bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briggs, W. R., Jones, R. L., and Walbot, V. (1991), Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 145–188.

    Article  Google Scholar 

  2. Gardner, H. W. (1991), Biochim. Biophys. Acta 1084, 221–239.

    PubMed  CAS  Google Scholar 

  3. Galliard, T. and Phillips, D. R. (1971), Biochem. J. 124, 431–438.

    PubMed  CAS  Google Scholar 

  4. Mulliez, E., Leblanc, J.-P., Girerd, J.-J., Rigaud, M., and Chottard, J.-C. (1987), Biochim. Biophys. Acta 916, 13–23.

    CAS  Google Scholar 

  5. Shimizu, T., Radmark, O., and Samuelsson, B. (1984), Proc. Natl. Acad. Sci. USA 81, 689–693.

    Article  PubMed  CAS  ADS  Google Scholar 

  6. Bostock, R. M., Yamamoto, H., Choi, D., Ricker, K. E., and Ward, B. L. (1992), Plant Physiol. 100, 1448–1456.

    Article  PubMed  CAS  Google Scholar 

  7. Galliard, T. and Phillips, D. R. (1972), Biochem. J. 129, 743–753.

    PubMed  CAS  Google Scholar 

  8. Galliard, T. and Phillips, D. R. (1973), Chem. Phys. Lipids 11, 173–180.

    Article  CAS  Google Scholar 

  9. Gibian, M. J. and Vandenberg, P. (1987), Anal. Biochem. 163, 343–349.

    Article  PubMed  CAS  Google Scholar 

  10. Axelrod, B., Cheesbrough, T. M., and Laakso, S. (1981), Methods Enzymol. 71, 441–451.

    Article  CAS  Google Scholar 

  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  12. Hartree, E. F. (1972), Anal. Biochem. 48, 422–427.

    Article  PubMed  CAS  Google Scholar 

  13. Kenneth, B. W. and Saegeberth, K. A. (1957), J. Chem. Soc. 79, 2822–2824.

    Article  Google Scholar 

  14. Royo, J., Cancanneyt, G., Perez, A. G., Sanz, C., Stormann, K., Rosahl, S., and Sanchez-Serrano, J. J. (1996), J. Biol. Chem. 271, 21,012–21,019.

    CAS  Google Scholar 

  15. Yokota, K., Lu, S., Takata, I., Kishimoto, A., Maeta, K., Nishimura, K., Nagaya, T., and Jisaka, M. (2003), in New Horizons in Biotechnology, Roussons, S., Soccol, C. R., Pandey, A., and Augur, C., eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 199–214.

    Google Scholar 

  16. Galliard, T., Phillips, D. R., and Matthew, J. A. (1975), Biochim. Biophys. Acta 409, 157–171.

    PubMed  CAS  Google Scholar 

  17. Galliard, T., Wardale, D. A., and Matthew, J. A. (1974), Biochem. J. 138, 23–31.

    PubMed  CAS  Google Scholar 

  18. Itoh, A. and Howe, G. A. (2001), J. Biol. Chem. 276, 3620–3627.

    Article  PubMed  CAS  Google Scholar 

  19. Brash, A. R. and Song, W.-C. (1995), J. Lipid Mediat. Cell Signal 12, 275–282.

    Article  PubMed  CAS  Google Scholar 

  20. Song, W.-C., Funk, C. D., and Brash, A. R. (1993), Proc. Natl. Acad. Sci. USA 90, 8519–8523.

    Article  PubMed  CAS  ADS  Google Scholar 

  21. Hamberg, M. (2000), Lipids 35, 353–363.

    Article  PubMed  CAS  Google Scholar 

  22. Ohta, H., Shida, K., Peng, Y. L., Furusawa, A., Shisiyama, J., Aibara, S., and Morita, Y. (1990), Plant Cell Physiol. 31, 1117–1122.

    CAS  Google Scholar 

  23. Gardner, H. W., Dornbos, D. L., Jr., and Desjardins, A. E. (1986), J. Agric. Food Chem. 38, 1316–1320.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, H., Yokota, K. Characterization of metabolic pathway of linoleic acid 9-hydroperoxide in cytosolic fraction of potato tubers and identification of reaction products. Appl Biochem Biotechnol 118, 115–132 (2004). https://doi.org/10.1385/ABAB:118:1-3:115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:118:1-3:115

Index Entries

Navigation