Skip to main content
Log in

Influence of carbon and nitrogen sources and temperature on hyperproduction of a thermotolerant β-glucosidase from synthetic medium by Kluyveromyces marxianus

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of carbon source and its concentration, inoculum size, yeast extract concentration, nitrogen source, pH of the fermentation medium, and fermentation temperature on β-glucosidase production by Kluyveromyces marxianus in shake-flask culture was investigated. These were the independent variables that directly regulated the specific growth and β-glucosidase production rate. The highest product yield, specific product yield, and productivity of β-glucosidase occurred in the medium (pH 5.5) inoculated with 10% (v/v) inoculum of the culture. Cellobiose (20 g/L) significantly improved β-glucosidase production measured as product yield (Y P/S ) and volumetric productivity (Q P ) followed by sucrose, lactose, and xylose. The highest levels of productivity (144 IU/[L·h]) of β-glucosidase occurred on cellobiose in the presence of CSL at 35°C and are significantly higher than the values reported by other researchers on almost all other organisms. The thermodynamics and kinetics of β-glucosidase production and its deactivation are also reported. The enzyme was substantially stable at 60°C and may find application in some industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

h :

Planck’s constant

k B :

Boltzmann constant

q p :

specific rate of enzyme production (IU/[g of cells·h])

q S :

specific rate of substrate consumption (g of substrate consumed/[g of cells·h])

Q IP :

rate of intracellular protein formation (mg/[L·h])

Q P :

rate of β-glucosidase formation (IU/[L·h])

Q S :

rate of substrate consumption (g of substrate consumed/[L·h])

Q X :

rate of cell mass formation (g of cells/[L·h])

R :

gas constant

T :

absolute temperature

Y P/S :

β-glucosidase yield (IU/g of substrate utilized)

Y P/X :

specific yield of enzyme production (IU/g of cells)

Y X/S :

cell yield coefficient (g of cells formed/g of substrate utilized)

ΔH*:

enthalpy of activation

ΔS*:

entropy of activation

μ:

specific growth rate (h−1)

References

  1. Woodward, J. (1991), Bioresour. Technol. 36, 67–75.

    Article  CAS  Google Scholar 

  2. Rajoka, M. I., Bashir, A., Hussain, M.-R. A., Parvez, S., Ghauri, M. T., and Malik, K. A. (1998), Folia Microbiol. 43, 129–135.

    CAS  Google Scholar 

  3. Gadgil, N. J., Daginawala, H. F., Chakarabarti, T., and Khanna, P. (1995), Enzyme Microb. Technol. 17, 942–946.

    Article  CAS  Google Scholar 

  4. Suto, M. and Tomita, F. J. (2001), Biosci. Bioeng. 92, 305–311.

    Article  CAS  Google Scholar 

  5. Latif, F., Rajoka, M. I., and Malik, K. A. (1994), Bioresour. Technol. 50, 107–112.

    Article  CAS  Google Scholar 

  6. Rajoka, M. I., Bashir, A., Hussain, M.-R. A., and Malik, K. A. (1998), Folia Microbiol. 43, 15–22.

    CAS  Google Scholar 

  7. Brady, D., Merchant, R., and McHale, A. P. (1994), Biotechnol. Lett. 16, 737–740.

    Article  CAS  Google Scholar 

  8. Espinoza, P., Barzana, E., Garcia-Garibay, M., and Gomez-Ruiz, L. (1992), Biotechnol. Lett. 14, 1053–1058.

    Article  CAS  Google Scholar 

  9. Belem, M. A. F. and Lee, B. H. (1998), Crit. Rev. Food Sci. Nutr. 38, 565–598.

    Article  PubMed  CAS  Google Scholar 

  10. Barron, N., Merchant, R., and McHale, A. P. (1994), World J. Microbiol. Biotechnol. 16, 625–630.

    CAS  Google Scholar 

  11. Banat, N., Merchant, R., and McHale, A. P. (1992), World J. Microbiol. Biotechnol. 16, 259–263.

    Article  Google Scholar 

  12. Rajoka, M. I. and Malik, K. A. (1997), Folia Microbiol. 42, 59–64.

    Article  CAS  Google Scholar 

  13. Saha, B. C. and Bothast, R. J. (1996), Appl. Environ. Microbiol. 62, 3165–3170.

    PubMed  CAS  Google Scholar 

  14. Converti, A. and Del Borghi, M. (1997), Enzyme Microb. Technol. 21, 511–517.

    Article  CAS  Google Scholar 

  15. Al-Asheh, S. and Duvniak, Z. (1994), Acta Biotechnol. 14, 223–237.

    Article  CAS  Google Scholar 

  16. Converti, A. and Dominguez, J. M. (2001), Biotechnol. Bioeng. 75, 39–45

    Article  PubMed  CAS  Google Scholar 

  17. Aiba, S., Humphrey, A. E., and Millis, N. F., eds. (1973), in Biochemical Engineering, 2nd ed., Academic, New York, pp. 92–127.

    Google Scholar 

  18. Arni, S., Molinari, F., Del Borghi, M., and Converti, A. (1996), Starke/Starch 51, 218–224.

    Article  Google Scholar 

  19. Lawford, H. G. and Rousseau, J. D. (1993), Biotechnol. Lett. 15, 615–620.

    Article  CAS  Google Scholar 

  20. Pirt, S. J. (1975), Principles of Cell Cultivation, Blackwell Scientific, London.

    Google Scholar 

  21. Furlan, A. S., Schneider, A. S. L., Merckle, R., Carvalho-Johans, M. F., and Jonas, R. (2000), Biotechnol. Lett. 22, 1195–1198.

    Article  Google Scholar 

  22. Inchaurrondo, V. A., Yantorno, O. M., and Voget, C. E. (1994), Process Biochem. 29, 47–53.

    Article  CAS  Google Scholar 

  23. Singh, D., Nigam, P., Banat, I. M., Marchant, R., and McHale, A. P. (1998), World J. Microbiol. Biotechnol. 14, 823–834.

    Article  CAS  Google Scholar 

  24. Spiridonov, N. A. and Wilson, D. B. (2001), Curr. Microbiol. 42, 295–302.

    PubMed  CAS  Google Scholar 

  25. Skory, C. D., Freer, S. N., and Bothast, R. J. (1996), Curr. Genet. 30, 417–422.

    Article  PubMed  CAS  Google Scholar 

  26. Cummings, C. and Fowler, T. (1996), Curr. Genet. 29, 227–230.

    PubMed  CAS  Google Scholar 

  27. Jäger, S., Brumbauer, A., Fehér, E., Réczey, K., and Kiss, L. (2001), World J. Microbiol. Biotechnol. 17, 455–461.

    Article  Google Scholar 

  28. Gomes, I., Gomes, J., Gomes, D. J., and Steiner, W. (2000), Appl. Microbiol. Biotechnol. 53, 461–468.

    Article  PubMed  CAS  ADS  Google Scholar 

  29. Bollok, M. and Reczey, K. (2000), Acta Alimentaria 29, 155–168.

    CAS  Google Scholar 

  30. Shaukat, F., Ghauri, M. T., Shahid, R., Parvez, S., and Rajoka, M. I. (2002), Biotechnol. Lett. 24, 1803–1806.

    Article  CAS  Google Scholar 

  31. Roels, J. A. (1983), Energetics and Kinetics in Biotechnology, Elsevier Biomedical, Amsterdam, The Netherlands.

    Google Scholar 

  32. Brady, D., Merchant, R., and McHale, A. P. (1995), Biotechnol. Lett. 17, 737–740.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Rajoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajoka, M.I., Khan, S., Latif, F. et al. Influence of carbon and nitrogen sources and temperature on hyperproduction of a thermotolerant β-glucosidase from synthetic medium by Kluyveromyces marxianus . Appl Biochem Biotechnol 117, 75–92 (2004). https://doi.org/10.1385/ABAB:117:2:075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:117:2:075

Index Entries

Navigation