Advertisement

Applied Biochemistry and Biotechnology

, Volume 116, Issue 1–3, pp 1167–1182 | Cite as

Expression of UDP-glucose dehydrogenase reduces cell-wall polysaccharide concentration and increases xylose content in alfalfa stems

  • Deborah A. SamacEmail author
  • Lynn Litterer
  • Glena Temple
  • Hans-Joachim G. Jung
  • David A. Somers
Session 6B— Plant Biotechnology and Feedstock Genomics

Abstract

The primary cell-wall matrix of most higher plants is composed of large amounts of uronic acids, primarily d-galacturonic acid residues in the back-bone of pectic polysaccharides. Uridine diphosphate (UDP)-glucose dehydrogenase is a key enzyme in the biosynthesis of uronic acids. We produced transgenic alfalfa (Medicago sativa) plants expressing a soybean UDP-glucose dehydrogenase cDNA under the control of two promoters active in alfalfa vascular tissues. In initial greenhouse experiments, enzyme activity in transgenic lines was up to seven-fold greater than in nontransformed control plants; however, field-grown transgenic plants had only a maximum of 1.9-fold more activity than the control. Cell-wall polysaccharide content was lower and Klason lignin content was higher in transgenics compared to the nontransformed control. No significant increase in pectin or uronic acids in the polysaccharide fraction was observed in any line. Xylose increased 15% in most transgenic lines and mannose concentration decreased slightly in all lines. Because of the complexity of pectic polysaccharides and sugar biosynthesis, it may be necessary to manipulate multiple steps in carbohydrate metabolism to alter the pectin content of alfalfa.

Index Entries

Carbohydrate forage homogalacturonan lucerne protein utilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beever, D. E. and Mould, F. L. (2000), in Forage Evaluation in Ruminant Nutrition, Givens, D. I., Owen, E., Axford, R. F. E., and Omed, H. M., eds., CAB International, Wallingford, UK, pp. 15–42.Google Scholar
  2. 2.
    Galyean, M. L. and Goetsch, A. L. (1993), in Forage Cell Wall Structure and Digestibility, Jung, H. G., Buxton, D. R., Hatfield, R. D., and Ralph, J., eds., American Society of Agronomy-Crop Science Society of America-Soil Science Society of America (ASA-CSSA-SSSA), Madison, WI, pp. 33–72.Google Scholar
  3. 3.
    Hatfield, R. D. and Weimer, P. J. (1995), J. Sci. Food Agric. 69, 185–196.CrossRefGoogle Scholar
  4. 4.
    Nocek, J. E. and Russell, J. B. (1988), J. Dairy Sci. 71, 2070–2107.Google Scholar
  5. 5.
    Strobel, H. J. and Russell, J. B. (1986), J. Dairy Sci. 69, 2941–2947.CrossRefGoogle Scholar
  6. 6.
    Aman, P. (1993), in Forage Cell Wall Structure and Digestibility, Jung, H. G., Buxton, D. R., Hatfield, R. D., and Ralph, J., eds., American Society of Agronomy-Crop Science Society of America-Soil Science Society of America (ASA-CSSA-SSSA), Madison, WI, pp. 183–200.Google Scholar
  7. 7.
    Hatfield, R. D. (1992), J. Agric. Food Chem., 40, 424–430.CrossRefGoogle Scholar
  8. 8.
    Robertson, D., Beech, I., and Bolwell, G. P. (1996), Phytochemistry 39, 21–28.CrossRefGoogle Scholar
  9. 9.
    Tenhaken, R. and Thulke, O. (1996), Plant Physiol. 112, 1127–1134.CrossRefGoogle Scholar
  10. 10.
    Seitz, B., Klos, C., Wurm, M., and Tenhaken, R. (2000), Plant J. 21, 537–546.CrossRefGoogle Scholar
  11. 11.
    Dalessandro, G. and Northcote, D. H. (1977), Biochem. J. 162, 267–279.Google Scholar
  12. 12.
    Engles, F. M. and Jung, H. G. (1998), Ann. Bot. 82, 561–568.CrossRefGoogle Scholar
  13. 13.
    Hatfield, R. D., Ralph, J., and Grabber, J. H. (1999), Crop. Sci. 39, 27–37.CrossRefGoogle Scholar
  14. 14.
    Pathirana, S., Samac, D. A., Roeven, R., Vance, C. P., and Gantt, S. J. (1997), Plant J. 12, 293–304.CrossRefGoogle Scholar
  15. 15.
    Hempel, J., Perozich, J., Romovacek, H., Hinich, A., Kuo, I., and Feingold, D. S. (1994), Protein Sci. 3, 1074–1080.CrossRefGoogle Scholar
  16. 16.
    Ausubel, F. M., Brent, R., Kingston, R. E., and Moore, D. (1995), Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology John Wiley & Sons, New York, NY.Google Scholar
  17. 17.
    Samac, D. A. and Shah, D. M. (1991), Plant Cell 3, 1063–1072.CrossRefGoogle Scholar
  18. 18.
    Bevan, M. (1984), Nucleic Acids Res. 12, 8711–8720.CrossRefGoogle Scholar
  19. 19.
    Bingham, E. T. (1991), Crop Sci., 31, 1098.CrossRefGoogle Scholar
  20. 20.
    Austin, S., Bingham, E. T., Matthews, D. E., Shahan, M. N., Will, J., and Burgess, R. R. (1995), Euphytica 85, 381–393.CrossRefGoogle Scholar
  21. 21.
    Stewart, D. C. and Copeland, L. (1998), Plant Physiol. 116, 349–355.CrossRefGoogle Scholar
  22. 22.
    Theander, O., Aman, P., Westerlund, E., Andersson, R., and Petterson, D. (1995), J. A.O.A.C. Int., 78, 1020–1044.Google Scholar
  23. 23.
    Ahmed, A. E. R. and Labavitch, J. M. (1977), J. Food Biochem. 1, 361–365.CrossRefGoogle Scholar
  24. 24.
    SAS Institute (1988), SAS/STAT Users Guide, Release 6.03 Ed., SAS Institute, Cary, NC.Google Scholar
  25. 25.
    Reiter, W.-D. and Vanzin, G. F. (2001), Plant Molec. Biol. 47, 95–113.CrossRefGoogle Scholar
  26. 26.
    Muñoz, R., López, R., de Frutos, M., and García, E. (1999), Mol. Microbiol. 31, 703–713.CrossRefGoogle Scholar
  27. 27.
    Wakabayashi, K., Sakurai, N., and Kuraishi, S. (1989), Plant Cell Physiol. 30, 99–105.Google Scholar
  28. 28.
    Biffen, M. and Hanke, D. E. (1991), Plant Sci. 75, 203–213.CrossRefGoogle Scholar
  29. 29.
    Dörmann, P. and Benning, C. (1998), Plant J. 13, 641–652.CrossRefGoogle Scholar
  30. 30.
    Bonin, C. P., Potter, I., Vanzin, G. F., and Reiter, W.-D. (1997), Proc. Natl. Acad. Sci. USA 94, 2085–2090.CrossRefGoogle Scholar
  31. 31.
    Oomen, R. J. F. J., Doeswijk-Voragen, C. H. L., Bush, M. S., Vincken, J.-P., Borkhardt, B., van den Broek, L. A. M., Corsar, J., Ulvskov, P., Voragen, A. G. J., McCann, M. C., and Visser, R. G. F. (2002), Plant J. 30, 403–413.CrossRefGoogle Scholar
  32. 32.
    Skjøt, M., Pauly, M., Bush, M. S., Borkhardt, B., McCann, M. C., and Ulvskov, P. (2002), Plant Physiol. 129, 95–102.CrossRefGoogle Scholar
  33. 33.
    Burton, R. A., Gibeaut, D. M., Bacic, A., Findlay, K., Roberts, K., Hamilton, A., Baulcombe, D. C., and Fincher, G. B. (2000), Plant Cell 12, 691–705.CrossRefGoogle Scholar
  34. 34.
    His, I., Driouich, A., Nicol, F., Jauneau, A., and Höfte, H. (2001), Planta 212, 348–358.CrossRefGoogle Scholar
  35. 35.
    Jung, H. G. and Engels, F. M. (2002), Crop Sci. 42, 524–534.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Deborah A. Samac
    • 1
    • 2
    Email author
  • Lynn Litterer
    • 3
  • Glena Temple
    • 4
  • Hans-Joachim G. Jung
    • 1
    • 3
  • David A. Somers
    • 3
  1. 1.USDA-ARS-Plant Science ResearchUniversity of MinnesotaSt. Paul
  2. 2.Department of Plant PathologyUniversity of MinnesotaSt. Paul
  3. 3.Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. Paul
  4. 4.Biology DepartmentViterbo UniversityLa Crosse

Personalised recommendations