Applied Biochemistry and Biotechnology

, Volume 115, Issue 1–3, pp 1139–1159 | Cite as

Conversion of distiller's grain into fuel alcohol and a higher-value animal feed by dilute-acid pretreatment

  • Melvin P. Tucker
  • Nicholas J. Nagle
  • Edward W. Jennings
  • Kelly N. Ibsen
  • Andy Aden
  • Quang A. Nguyen
  • Kyoung H. Kim
  • Sally L. Noll
Session 6A Biomass Pretreatment and Hydrolysis

Abstract

Over the past three decades ethanol production in the United States has increased more than 10-fold, to approx 2.9 billion gal/yr (mid-2003), with ethanol production expected to reach 5 billion gal/yr by 2005. The simultaneous coproduction of 7 million t/yr of distiller's grain (DG) may potentially drive down the price of DG as a cattle feed supplement. The sale of residual DG for animal feed is an important part of corn dry-grind ethanol production economics; therefore, dry-grind ethanol producers are seeking ways to improve the quality of DG to increase market penetration and help stabilize prices. One possible improvement is to increase the protein content of DG by converting the residual starch and fiber into ethanol. We have developed methods for steam explosion, SO2, and dilute-sulfuric acid pretreatment of DG for evaluation as a feedstock for ethanol production. The highest soluble sugar yields (∼77% of available carbohydrate) were obtained by pretreatment of DG at 140°C for 20 min with 3.27 wt% H2SO4. Fermentation protocols for pretreated DG were developed at the bench scale and scaled to a working volume of 809 L for production of hydrolyzed distiller's grain (HDG) for feeding trials. The pretreated DG was fermented with Saccharomyces cerevisiae D5A, with ethanol yields of 73% of theoretical from available glucans. The HDG was air-dried and used for turkey-feeding trials. The inclusion of HDG into turkey poult (as a model non-ruminant animal) diets at 5 and 10% levels, replacing corn and soybean meal, showed weight gains in the birds similar to controls, whereas 15 and 20% inclusion levels showed slight decreases (−6%) in weight gain. At the conclusion of the trial, no negative effects on internal organs or morphology, and no mortality among the poults, was found. The high protein levels (58–61%) available in HDG show promising economics for incorporation of this process into corn dry-grind ethanol plants.

Index Entries

Distiller's grain corn dry-grind pretreatment enzymatic hydrolysis ethanol animal feed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BBI International. (2003). U.S. Ethanol Production Existing and Planned Capacity. BB International. (Website: http://www.bbibiofuels.com/plant.production/usuc. html). Last modified on 10/13/2003.Google Scholar
  2. 2.
    BBI International. (2001), The U.S. Dry-Mill Ethanol Industry. (Website: http://www.bioproduct-bioenergy.gov/existsite/pdfs/drymill_ethanol_industry.pdf).Google Scholar
  3. 3.
    National Corn Growers Association. (2003), Distillers Grains Defined, (Website: www.ncga.com/ethanol/co_products/definition_production.htm). Last modified 6/03/03.Google Scholar
  4. 4.
    Knott, J., Shurson, J., and Gohil, J. (2003), Effects of the Nutrient Variability of Distiller's Solubles Within Ethanol Plants and the Amount of Distiller's Solubles Blended With Distiller's Grains on Fat, Protein and Phosphorus Content of DDGS, (Website: http://www.ddgs.umn.edu/research-quality/nutrientvariability.pdf). Department of Animal Science University of Minnesota. Last modified 9/11/03.Google Scholar
  5. 5.
    Knott, J., Shurson, J., and Gohil, J. (2003), Variation in Particle Size and Bulk Density of Distiller's Dried Grains with Solubles (DDGS) Produced by “New Generation” Ethanol Plants in Minnesota and South Dakota, (Website: http://www.ddgs.umn.edu/research-quality/variation.pdf). Department of Animal Science University of Minnesota. Last modified 9/11/03Google Scholar
  6. 6.
    Morales, F. J. and Boekel, M. A. J. S. (1998), Int. Dairy J. 8(10/11), 907–915.CrossRefGoogle Scholar
  7. 7.
    Bura, B., Mansfield, S. D., Saddler, J. N., and Bothast, R. J. (2002), Appl. Biochem. Biotechnol. 98–100, 59–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Dale, B. E., Leong, C. K., Pham, T. K., Esquivel, V. M., Rios, I., and Latimer, V. M. (1996), Bioresour. Technol. 56, 111–116.CrossRefGoogle Scholar
  9. 9.
    Weil, J. R., Sarikaya, A., Rau, S. L., Goetz, J., Ladisch, C. M., Brewer, M., Hendrickson, R., and Ladisch, M. R. (1998), Appl. Biochem. Biotechnol. 73, 1–17.Google Scholar
  10. 10.
    Moniruzzaman, M., Dale, B. E., Hespell, R. B., and Bothast, R. J. (1997), Appl. Biochem. Biotechnol. 67, 113–126.CrossRefGoogle Scholar
  11. 11.
    Moniruzzaman, M., Dien, B. S., Ferrer, B., Hespell, R. B., Dale, B. E., Ingram, L. O., and Bothast, R. J. (1996), Biotechnol. Lett., 18, 985–990.CrossRefGoogle Scholar
  12. 12.
    Allen, S. G., Schulman, B., Lichwa, J., Antal, M. J., Laser, M., and Lynd, L. R. (2001), Ind. Eng. Chem. Res. 40, 2934–2941.CrossRefGoogle Scholar
  13. 13.
    Grohmann, K. and Bothast, R. J. (1997), Process Biochem. 32(5), 405–415.CrossRefGoogle Scholar
  14. 14.
    Knerr, T., Lerche, H., Pischetsrieder, M., and Severin, T. (2001), J. Agric. Food Chem. 49(4), 1966–1970.PubMedCrossRefGoogle Scholar
  15. 15.
    Oste, R. E., Brandon, D. L., and Bates, A. H. (1990), J. Agric. Food Chem. 38(1), 258–261.CrossRefGoogle Scholar
  16. 16.
    Glomb, M. A. and Pfahler, C. (2001), J. Biol. Chem. 276(45), 41,638–41,647.CrossRefGoogle Scholar
  17. 17.
    Dien, B. S., Hespell, R. B., Ingram, L. O., and Bothast, R. J. (1997), World J. Microbiol. Biotechnol. 13, 619–625.CrossRefGoogle Scholar
  18. 18.
    Nguyen, Q. A., Tucker, M. P., Boynton, B. L., Keller, F. A., and Schell, D. J. (1998), Appl. Biochem. Biotechnol. 70–72, 77–87.Google Scholar
  19. 19.
    Nguyen, Q. A., Tucker, M. P., Keller, F. A., and Eddy, F. P. (2000), Appl. Biochem. Biotechnol. 84–86, 561–576.PubMedCrossRefGoogle Scholar
  20. 20.
    Overend, R. P., and Chornet, E. (1987), Phil. Trans. R. Soc. Lond. A 321, 523–536.ADSGoogle Scholar
  21. 21.
    Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., and Hahn-Hagerdal, B. (1998), Appl. Biochem. Biotechnol 70–74, 3–15.CrossRefGoogle Scholar
  22. 22.
    Chum, H. L., Johnson, D. K., Black, S. K., and Overend, R. P. (1990), Appl. Biochem. Biotechnol. 24–25, 1–14.Google Scholar
  23. 23.
    Keller, F. A. and Nguyen, Q. A. (2002), US patent no. 6,498,029.Google Scholar
  24. 24.
    Hames, B. R. (1996), HPLC Analysis of Liquid Fractions of Process Samples for Byproducts and Degradation Products, Laboratory Analytical Procedure No. 015, (Website: http://www.afdc.doe.gov/pdfs/4698.pdf.Google Scholar
  25. 25.
    Association of Official Analytical Chemists. (1990), Official Methodfs of Analysis in Protein (Crude) in Animal Feed: Combustion Method, AOAC Method 990.03, 15th Ed., Helrich, K., ed., AOAC, Arlington, VA.Google Scholar
  26. 26.
    National Research Center for the National Academy of Science. (1994), Nutrient Requirements for Poultry, 9th Rev. Ed., National Academy Press, Washington, DC.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Melvin P. Tucker
    • 1
  • Nicholas J. Nagle
    • 1
  • Edward W. Jennings
    • 1
  • Kelly N. Ibsen
    • 1
  • Andy Aden
    • 1
  • Quang A. Nguyen
    • 1
  • Kyoung H. Kim
    • 2
  • Sally L. Noll
    • 3
  1. 1.National Bioenergy Center, Bioprocess Engineering GroupNational Renewable Energy LaboratoryGolden
  2. 2.Department of Food ScienceKorea UniversitySeoulS. Korea
  3. 3.Animal Science Laboratory, 405B Haecker HallUniversity of MinnesotaSt. Paul

Personalised recommendations