Skip to main content
Log in

Fermentation of “Quick Fiber” produced from a modified corn-milling process into ethanol and recovery of corn fiber oil

  • Session 6A Biomass Pretreatment and Hydrolysis
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Approximately 9% of the 9.7 billion bushels of corn harvested in the United States was used for fuel ethanol production in 2002, half of which was prepared for fermentation by dry grinding. The University of Illinois has developed a modified dry grind process that allows recovery of the fiber fractions prior to fermentation. We report here on conversion of this fiber (Quick Fiber [QF]) to ethanol. QF was analyzed and found to contain 32%wt glucans and 65%wt total carbohydrates. QF was pretreated with dilute acid and converted into ethanol using either ethanologenic Escherichia coli strain FBR5 or Saccharomyces cerevisiae. For the bacterial fermentation the liquid fraction was fermented, and for the yeast fermentation both liquid and solids were fermented. For the bacterial fermentation, the final ethanol concentration was 30 g/L, a yield of 0.44 g ethanol/g of sugar(s) initially present in the hydrolysate, which is 85% of the theoretical yield. The ethanol yield with yeast was 0.096 gal/bu of processed corn assuming a QF yield of 3.04 lb/bu. The residuals from the fermentations were also evaluated as a source of corn fiber oil, which has value as a nutraceutical. Corn fiber oil yields were 8.28%wt for solids recovered following prtetreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dien, B. S., Bothast, R. J., Nichols, N. N., and Cotta, M. A. (2002), Int. Sugar J. 104 (1241), 204–207.

    CAS  Google Scholar 

  2. Singh, V., Moreau, R. A., Doner, L. W., Eckhoff, S. R., and Hicks, K. B. (1999), Cereal Chem. 76(6), 868–872.

    CAS  Google Scholar 

  3. Wahjudi, J., Xu, L., Wang, P., Singh, V., Buriak, P., Rausch, K. D., Mcaloo, A. J., Tumbleson, M. E., and Eckhoff, S. R. (2000), Cereal Chem. 77 (5), 640–644.

    CAS  Google Scholar 

  4. Taylor, F., Mcaloon, A. I., Craig, I. C., Yang, P., Wahjudi, J., and Eckhoff, S. R. (2001), Appl. Biochem. Biotechnol. 94 (1), 41–49.

    Article  PubMed  CAS  Google Scholar 

  5. Moreau, R. A., Hicks, K. B., and Norton, R. A. (1998), US patent no. 5,843,499.

  6. Moreau, R. A., Powell, M. J., and Hicks, K. B. (1999), J. Agric. Food Sci. 44, 2149–2154.

    Article  Google Scholar 

  7. Moreau, R. A., Singh, V., Nunez, A., and Hicks, K. B. (2000), Biochem. Soc. Trans. 28, 803–806.

    Article  PubMed  CAS  Google Scholar 

  8. Hicks, K. B. and Moreau, R. A. (2001), Food Technol. 55 (1), 63–67.

    CAS  Google Scholar 

  9. Moreau, R. A., Whitaker, B. D., and Hicks, K. B. (2002), Prog. Lipid Res. 41 (6), 457–500.

    Article  PubMed  CAS  Google Scholar 

  10. Dien, B. S., Hespell, R. B., Wyckoff, H. A., and Bothast, R. J. (1998), Enzyme Micro. Technol. 23 (6), 366–371.

    Article  CAS  Google Scholar 

  11. Dien, B. S., Nichols, N. N., O'Bryan, P. J., and Bothast, R. J. (2000), Appl. Biochem. Biotechnol. 84–86, 181–196.

    Article  PubMed  Google Scholar 

  12. Singh, V. and Eckhoff, S. R. (1996), Cereal Chem. 73 (6), 716–720.

    CAS  Google Scholar 

  13. Dien, B. S., Bothast, R. J., Iten, L. B., Barrios, L., and Eckhoff, S. R. (2002), Cereal Chem. 79 (4), 582–585.

    CAS  Google Scholar 

  14. Dien, B. S., Hespell, R. B., Ingram, L. O., and Bothast, R. J. (1997), World. J. Microbiol. Biotechnol. 13 (6), 619–625.

    Article  CAS  Google Scholar 

  15. Beall, D. S., Ohta, K., and Ingram, L. O. (1991), Biotechnol. Bioeng. 38 (3), 296–303.

    Article  CAS  Google Scholar 

  16. Ghose, T. K. (1987), Pure Appl. Chem. 59 (2), 257–268.

    CAS  Google Scholar 

  17. Hespell, R. B., Wolf, R., and Bothast, R. J. (1987), Appl. Environ. Microbiol. 53 (12), 2849–2853.

    PubMed  CAS  Google Scholar 

  18. Nichols, N. N., Dien, B. S., and Bothast, R. J. (2001), Appl. Microbiol. Biotechnol. 56 (1–2), 120–125.

    Article  PubMed  CAS  Google Scholar 

  19. Gulati, M., Kohlmann, K., Ladisch, M. R., Hespell, R., and Bothast, R. J. (1996), Bioresour. Technol. 58 (3), 253–264.

    Article  CAS  Google Scholar 

  20. Grohmann, K. and Bothast, R. J. (1997), Process Biochem. 32 (5), 405–415.

    Article  CAS  Google Scholar 

  21. Grohmann, K. (1993), in Bioconversion of Forest and Agricultural Plant Residues, 1st Ed., Saddler, J. N., ed., C.A.B. International, Wallingford, UK, pp. 183–210.

    Google Scholar 

  22. Singh, V., Johnston, D. B., Moreau, R. A., Hicks, K. B., Dien, B. S., and Bothast, R. J. (2003), Cereal Chem. 80 (2), 126–129.

    CAS  Google Scholar 

  23. Palmqvist, E. and Hahn-Hagerdal, B. (2000), Bioresour. Technol. 74 (1), 17–24.

    Article  CAS  Google Scholar 

  24. Palmqvist, E. and Hahn-Hagerdal, B. (2000), Bioresour. Technol. 74 (1), 25–33.

    Article  CAS  Google Scholar 

  25. Leathers, T. D. (1998), Soc. Ind. Microbiol. Neurs. 48 (5), 210–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce S. Dien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dien, B.S., Nagle, N., Hicks, K.B. et al. Fermentation of “Quick Fiber” produced from a modified corn-milling process into ethanol and recovery of corn fiber oil. Appl Biochem Biotechnol 115, 937–949 (2004). https://doi.org/10.1385/ABAB:115:1-3:0937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:115:1-3:0937

Index Entries

Navigation