Skip to main content
Log in

Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus

  • Session 3—Bioprocessing, Including Separations
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study addressed the utilization of an industrial waste stream, paper sludge, as a renewable cheap feedstock for the fermentative production of hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus. Hydrogen, acetate, and lactate were produced in medium in which paper sludge hydrolysate was added as the sole carbon and energy source and in control medium with the same concentration of analytical grade glucose and xylose. The hydrogen yield was dependent on lactate formation and varied between 50 and 94% of the theoretical maximum. The carbon balance in the medium with glucose and xylose was virtually 100%. The carbon balance was not complete in the paper sludge medium because the measurement of biomass was impaired owing to interfering components in the paper sludge hydrolysate. Nevertheless, >85% of the carbon could be accounted for in the products acetate and lactate. The maximal volumetric hydrogen production rate was 5 to 6 mmol/(L·h), which was lower than the production rate in media with glucose, xylose, or a combination of these sugars (9–11 mmol/[L·h]). The reduced hydrogen production rate suggests the presence of inhibiting components in paper sludge hydrolysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benemann, J. (1996), Nat. Biotechnol. 14, 1101–1103.

    Article  PubMed  CAS  Google Scholar 

  2. Wünschiers, R. and Lindblad, P. (2002), Int. J. Hydrogen Energy 27, 1131–1140.

    Article  Google Scholar 

  3. Gosselink, J.W. (2002), Int. J. Hydrogen Energy 27, 1125–1129.

    Article  CAS  Google Scholar 

  4. Claassen, P. A. M., van Lier, J. B., Lopez Contreras, A. M., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., de Vries, S. S., and Weusthuis, R. A. (1999), Appl. Microbiol Biotechnol. 52, 741–755.

    Article  CAS  Google Scholar 

  5. Noike, T., Takabatake, H., Mizuno, O., and Ohba, M. (2002), Int., J. Hydrogen Energy 27, 1367–1371.

    Article  CAS  Google Scholar 

  6. Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L., and Noike, T. (2000), Bioresour. Technol. 73, 59–65.

    Article  CAS  Google Scholar 

  7. Woodward, J., Mattingly, S. M., Danson, M., Hough, D., Ward, N., and Adams, M. (1996), Nat. Biotechnol. 14, 872–874.

    Article  PubMed  CAS  Google Scholar 

  8. Nandi, R. and Sengupta, S. (1998), Crit. Rev. Microbiol. 24(1), 61–84.

    Article  PubMed  CAS  Google Scholar 

  9. Schröder, C., Selig, M., and Schönheit, P. (1994), Arch. Microbiol. 161, 460–470.

    Google Scholar 

  10. van Niel, E. W. J., Budde, M. A. W., de Haas, G. G., van der Wal, F. J., Claassen, P. A. M., and Stams, A. J. M. (2002), Int. J. Hydrogen Energy 27, 1391–1398.

    Article  Google Scholar 

  11. van Ooteghem, S. A., Beer S. K., and Yue, P. C. (2002), Appl. Biochem. Biotechnol. 98, 177–189.

    Article  PubMed  Google Scholar 

  12. Noike, T. and Mizuno O. (2000), Water Sci. Tech. 42, 155–162.

    CAS  Google Scholar 

  13. Claassen, P. A. M., van Groenestijn, J. W., Janssen, A. J. H., van Niel, E. W. J., and Wijffels, R. H. (2000), in Proceeding, of 1 st World Conference and Exhibition on Biomass for Energy, Industry and Climate Change Protection, Palz, W., Spitzer, J., Maniatis K., Kwant, K., Helm, P., and Grassi, A., eds., ETA-Florance, Italy; WIP-Munich, Germany, pp. 529–532

    Google Scholar 

  14. Hallenbeck, P. C. and Benemann, J. R. (2002), Int. J. Hydrogen Energy 27, 1185–1193.

    Article  CAS  Google Scholar 

  15. Kádár, Z., de Vrije, T., Budde M., Szengyel, Z., Réczey, K., and Claassen, P. A. M. (2003), Appl. Biochem. Biotechnol. 105, 557–566.

    Article  PubMed  Google Scholar 

  16. Goa, J. (1953), Scand. J. Clin. Lab. Invest. 5, 218–222.

    PubMed  CAS  Google Scholar 

  17. Perego P., Fabiano, B., Ponzano, G. P., and Palazzi, E. (1998), Bioprocess Eng. 19, 205–211.

    Article  CAS  Google Scholar 

  18. van Niel, E., Claassen, P. A. M., and Stams, A. J. M. (2003), Biotechnol. Bioeng. 81, 255–262.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieternel A. M. Claassen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kádár, Z., de Vrije, T., van Noorden, G.E. et al. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus . Appl Biochem Biotechnol 114, 497–508 (2004). https://doi.org/10.1385/ABAB:114:1-3:497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:114:1-3:497

Index Entries

Navigation