Applied Biochemistry and Biotechnology

, Volume 114, Issue 1–3, pp 433–445 | Cite as

Enzymatic synthesis of monolaurin

  • Carla C. B. Pereira
  • Mônica A. P. da Silva
  • Marta A. P. Langone
Session 2—Introduction to Microbial Catalysis and Engineering

Abstract

The aim of this study was to produce monolaurin utilizing a commercial immobilized lipase (Lipozyme IM-20; Novo Nordisk, Bagsvaerd, Denmark) through the direct esterification of lauric acid and glycerol in a solvent-free system. The influence of fatty acid/glycerol molar ratio, temperature, and Lipozyme (IM-20) concentration on the molar fraction of monolaurin were determined using an experimental design. The best conditions employed were 55°C, lauric acid/glycerol molar ratio of 1.0, and 3.0% (w/w) enzyme concentration. The final product, obtained after 6 h of reaction, was 45.5% monolaurin, 26.8% dilaurin, 3.1% trilaurin, and 24.6% lauric acid. The reusability of the enzyme was also studied.

Index Entries

Monolaurin Immobilized lipase esterification experimental design solvent-free medium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Machado, M.S., Perez-Pariente, J., Sastre, E., Cardoso, D., and Guerenu, A.M. (2000), Appl. Catalysis. A 203, 321–328.CrossRefGoogle Scholar
  2. 2.
    Cotton, L. and Marshall, D. (1997), Lebensm. Wiss. U. Technol. 30, 830–833.CrossRefGoogle Scholar
  3. 3.
    Chaibi, A., Ababouch, L., and Busta, F. (1996a) J. Food Protection 59(8), 832–837.Google Scholar
  4. 4.
    Chaibi, A., Ababouch, L., and Busta, F. (1996b), J. Food Protection 59(7), 716–722.Google Scholar
  5. 5.
    Bergsson, G., Steingrímsson, O., and Thormar, H. (2002), Int. J. Antimicrob. Agents 20, 258–262.PubMedCrossRefGoogle Scholar
  6. 6.
    Sun, C., O'Connor, C., and Roberton, A. (2003), Immun. Med. Microbiol. 1496, 1–9.Google Scholar
  7. 7.
    Bornscheuer, U.T. (1995), Enzyme Microb. Technol. 17, 578–586.CrossRefGoogle Scholar
  8. 8.
    Rosu, R., Uozaki, Y., Iwasaki, Y., and Yamane, T. (1997), J. Am. Oil Chem. Soc. 74, 445–450.CrossRefGoogle Scholar
  9. 9.
    Langone, M.A.P. and Sant'Anna, G.L.P. (1999), Appl. Biochem. Biotechnol. 77–79, 759–770.PubMedCrossRefGoogle Scholar
  10. 10.
    Montgomery, D.C. (1997), Design and Analysis of Experiments, 4th Ed. John Wiley & Sons, New York, NY.MATHGoogle Scholar
  11. 11.
    Langone, M.A.P. and Sant'Anna, G.L.P. (2002), Appl. Biochem. Biotechnol. 98–100, 997–1008.PubMedCrossRefGoogle Scholar
  12. 12.
    Da Silva, M.A.M., Medeiros, V.C., Langone, M.A.P., and Freire, D.M.G. (2003), Appl. Biochem. Biotechnol. 105–108, 757–768.PubMedCrossRefGoogle Scholar
  13. 13.
    Langone, M.A.P., Abreu, M.E., Rezende, M.J.C., and Sant'Anna, G.L.P. (2002), Appl. Biochem. Biotechnol. 98–100, 987–996.PubMedCrossRefGoogle Scholar
  14. 14.
    Wong, W.C., Basri, M., Razak, C.N.A., and Salleh, A.B. (2000), J. Am. Oil Chem. Soc., 77(1), 85–88.CrossRefGoogle Scholar
  15. 15.
    Ferreira-Dias, S., Correia, A.C., Baptista, F.O., and Marty, A. (2001), J. Mol. Cat. B-Enzym. 11, 699–711.CrossRefGoogle Scholar
  16. 16.
    Bellot, J.C., Choisnard, L., Castillo, E., and Marty, A. (2001), Enzyme Microb. Technol. 28, 362–369.PubMedCrossRefGoogle Scholar
  17. 17.
    Arcos, J.A. and Otero, C. (1996), J. Am. Oil Chem. Soc. 74(6), 673–682.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Carla C. B. Pereira
    • 1
  • Mônica A. P. da Silva
    • 1
  • Marta A. P. Langone
    • 2
  1. 1.Escola de QuímicaUniversidade Federal do Rio de Janeiro, Centro de TecnologiaRJBrazil
  2. 2.Instituto de QuímicaUniversidade do Estado do Rio de JaneiroRJBrazil

Personalised recommendations