Skip to main content
Log in

Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

  • Session 2—Introduction to Microbial Catalysis and Engineering
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commently used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamento us fungi from genus Penicillium and compared with that of T. reesei. Either Solka-Floc cellulose or oat spelt xylan was used as carbon source in shake flask cultivations. All the fungi investigated showed coinduction of cellulolytic and xylanolytic enzymes during growth on cellulose as well as on xylan. The highest filter paper activity was measured after cultivation of Penicillium brasilianum IBT 20888 on cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kheshgi, H. S., Prince, R. G., and Marland, G. (2000), Annu. Rev. Energy Environ. 25, 199–244.

    Article  Google Scholar 

  2. Wood, T. M. (1985), Biochem. Soc. Trans. 13, 407–410.

    PubMed  CAS  Google Scholar 

  3. Ryu, D. D. Y. and Mandels, M. (1980), Enzyme Microb. Technol. 2, 91–102.

    Article  CAS  Google Scholar 

  4. Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. (1990), Biotechnol. Bioeng. 36, 275–287.

    Article  CAS  Google Scholar 

  5. Tengborg, C., Galbe, M., and Zacchi, G. (2001), Enzyme Microb. Technol. 28, 835–844.

    Article  PubMed  CAS  Google Scholar 

  6. Christensen, M., Frisvad, J. C., and Tuthill, D. E. (2000), in Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification, Samson, R. A. and Pitt, J. I., eds., Harwood Academic Publishers, London, UK, pp. 309–320.

    Google Scholar 

  7. van Wyk, J. P. H. (1999), Biomass Bioenergy 16, 239–242.

    Article  Google Scholar 

  8. Thygesen, A., Thomsen, A. B., Schmidt, A. S., Jørgensen, H., Ahring, B. K., and Olsson, L. (2003), Enzyme Microb. Technol. 32, 606–615.

    Article  CAS  Google Scholar 

  9. Castellanos, O. F., Sinitsyn, A. P., and Vlasenko, E. Y. (1995), Bioresour. Technol. 52, 119–124.

    Article  CAS  Google Scholar 

  10. Mandels, M., and Weber, J. (1969), Adv. Chem. Ser., 95, 394–414.

    Google Scholar 

  11. Ghose, T. (1984), in Measurement of Cellulase Activities, Commission on Biotechnology, International Union of Pure and Applied Chemistry, Delhi, India, pp. 1–13.

    Google Scholar 

  12. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  13. Bailey, M. J., Biely, P., and Poutanen, K. (1992), J. Biotechnol. 23, 257–270.

    Article  CAS  Google Scholar 

  14. Jørgensen, H., Eriksson, T., Börjesson, J., Tjerneld, F., and Olsson, L. (2003), Enzyme Microb. Technol. 32, 851–861.

    Google Scholar 

  15. Deshpande, M. V., Eriksson, K.-E., and Pettersson, L. G. (1984), Anal. Biochem. 138, 481–487.

    Article  PubMed  CAS  Google Scholar 

  16. Herbert, D., Phipps, P. J., and Strange, R. E. (1971), in Methods in Microbiology, vol. 5B, Norris, J.R. and Ribbons, D.W., eds., Academic Press, London, UK, pp 242–248.

    Google Scholar 

  17. Gronall, A. G., Bardawill, D. J., and David, M. M. (1949), J. Biol. Chem. 177, 751–766.

    Google Scholar 

  18. Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  19. Schulz, G. and Hirte, W. F. (1989), Zentralbl. Mikrobiol. 144, 81–96.

    Google Scholar 

  20. Margolles-Clark, E., Ilmén, M., and Penttilä, M. (1997), J. Biotechnol. 57, 167–179.

    Article  CAS  Google Scholar 

  21. van Peij, N. N. M. E., Gielkens, M. M. C., de Vries, R. P., Visser, J., and de Graaff, L. H. (1998), appl. Environ. Microbiol. 64, 3615–3619.

    PubMed  Google Scholar 

  22. Brown, J. A., Collin, S. A., and Wood, T. M. (1987), Enzyme Microb. Technol. 9, 176–180.

    Article  CAS  Google Scholar 

  23. Chaabouni, S. E., Hadj-Taieb, N., Mosrati, R., and Ellouz, R. (1994), Enzyme Microb. Technol. 16, 538–542.

    Article  CAS  Google Scholar 

  24. Brown, J. A., Falconer, D. J., and Wood, T. M. (1987), Enzyme Microb. Technol. 9, 169–175.

    Article  CAS  Google Scholar 

  25. Decker, C. H., Visser, J., and Schreier, P. (2000), J. Agric. Food. Chem. 48, 4929–4936.

    Article  PubMed  CAS  Google Scholar 

  26. Lin, J., Pillay, B., and Singh, S. (1999), Biotechnol. Appl. Biochem. 30, 81–87.

    PubMed  CAS  Google Scholar 

  27. Yun, S. I., Jeong, C. S., Chung, D. K., and Choi, H. S. (2001), Biosci. Biotechnol. Biochem. 65, 2028–2032.

    Article  PubMed  CAS  Google Scholar 

  28. Pitt, J. I. (1979), The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces, Academic Press, London, UK.

    Google Scholar 

  29. Kuhad, R. C. and Singh, A. (1993), World J. Microbiol. Biotechnol. 1, 100–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisbeth Olsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krogh, K.B.R., Mørkeberg, A., Jørgensen, H. et al. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 114, 389–401 (2004). https://doi.org/10.1385/ABAB:114:1-3:389

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:114:1-3:389

Index Entries

Navigation