Advertisement

Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 299–305 | Cite as

Kinetics of asparaginase II fermentation in Saccharomyces cerevisiae ure2dal80 mutant

Effect of nitrogen nutrition and pH
  • Maria Antonieta Ferrara
  • Josiane M. V. Mattoso
  • Elba P. S. Bon
  • Nei PereiraJr.
Article

Abstract

Although the quality of nitrogen source affects fermentation product formation, it has been managed empirically, to a large extent, in industrial scale. Laboratory-scale experiments successfully use the high-cost proline as a nonrepressive source. We evaluated urea as a substitute for proline in Saccharomyces cerevisiae ure2dal80 fermentations for asparaginase II production as a model system for nitrogen-regulated external enzymes. Maximum asparaginase II levels of 265 IU/L were observed in early stationary-phase cells grown on either proline or urea, whereas in ammonium cells, the maximum enzyme level was 157 IU/L. In all cases, enzyme stability was higher in buffered cultures with an initial pH of 6.5.

Index Entries

Saccharomyces cerevisiae ure2dal80 mutants nitrogen sources asparaginase II fermentation kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Magasanik, B. and Kaiser, C. A. (2002), Gene 290, 1–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Bon, E. P. S. and Webb, C. (1993), Appl. Biochem. Biotechnol. 39–40, 349–369.CrossRefGoogle Scholar
  3. 3.
    Bon, E. P. S., Carvajal, E., Stambrough, M., and Magasanik, B. (1997), Appl. Biochem. Biotechnol. 63–65, 203–212.PubMedGoogle Scholar
  4. 4.
    Oliveira, E. M. M., Carvajal, E., and Bon, E. P. S. (1999), Appl. Biochem. Biotechnol. 77–79, 311–316.PubMedCrossRefGoogle Scholar
  5. 5.
    Oliveira, E. M. M., Carvajal, E., Martins, A. S., and Bon, E. P. S. (2003), Yeast 20, 31–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Dunlop, P. C., Meyer, G. M., and Roon, R. J. (1980), J. Bacteriol. 143, 422–426.PubMedGoogle Scholar
  7. 7.
    Coffman, J. A. and Cooper, T. G. (1997), J. Bacteriol. 179, 5609–5613.PubMedGoogle Scholar
  8. 8.
    Rowen, D. W., Esiobu, N., and Magasanik, B. (1997), J. Bacteriol. 179, 3761–3766.PubMedGoogle Scholar
  9. 9.
    Roon, R. J., Murdockh, M., Kunze, B., and Dunlop, P. C. (1982), Arch. Biochem. Biophys. 219, 101–109.PubMedCrossRefGoogle Scholar
  10. 10.
    Pauling, K. D. and Jones, G. E. (1980), J. Gen. Microbiol. 117, 423–430.Google Scholar
  11. 11.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  12. 12.
    Kim, K. W. and Roon, R. J. (1983), Biochemistry 22, 2704–2707.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Maria Antonieta Ferrara
    • 1
  • Josiane M. V. Mattoso
    • 2
  • Elba P. S. Bon
    • 2
  • Nei PereiraJr.
    • 3
  1. 1.Far-Manguinhos, FIOCRUZRio de Janeiro, RJBrazil
  2. 2.Departamento de Bioquímica, Instituto de QuímicaUniversidade Federal do Rio de JaneiroBrazil
  3. 3.Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de Janeiro, RJBrazil

Personalised recommendations