Skip to main content
Log in

Integration of computer modeling and initial studies of site-directed mutagenesis to improve cellulase activity on Cel9A from Thermobifida fusca

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulases are a complex group of enzymes that are fundamental for the degradation of amorphous and crystalline cellulose in lignocellulosic material. Unfortunately, cellulases have a low catalytic efficiency on their substrates when compared to similar enzymes such as amylases, which has led to a strong interest in improving their activities. Thermobifida fusca secretes six cellulose degrading enzymes: two exo- and three endocellulases and an endo/exocellulase Cel9A (formerly called E4). Cel9A shows unique properties because of its endo- and exocellulase characteristics, strong activity on crystalline cellulose, and good synergistic properties. Therefore, it is an excellent target for mutagenesis techniques to improve crystalline cellulose degradation. In this article, we describe research conducted to improve Cel9A catalytic efficiency using a rational design and computer modeling. A computer model of Cel9A was created using the program CHARMM plus its PDB structure and a cellohexose molecule attached to the catalytic site as a starting model. Initially molecular graphics and energy minimization were used to extend the cellulose chain to 18 glucose residues spanning the catalytic domain and cellulose-binding domain (CBD). The interaction between this cellulose chain and conserved CBD residues was determined in the model, and mutations likely to improve the binding properties of the CBD were selected. Site-directed mutations were carried out using the pET vector pET26b, Escherichia coli DH5-α, and the QuickChange mutagenesis method. E. coli BL21-DE3 was used for protein production and expression. The purified proteins were assayed for enzymatic activity on filter paper, swollen cellulose, bacterial microcrystalline cellulose, and carboxymethylcellulose (CMC). Mutation of the conserved residue F476 to Y476 gave a 40% improved activity in assays with soluble and amorphous cellulose such as CMC and swollen cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, J. E. (1996), in Biotechnology, Cambridge University Press, Cambridge, MA, pp. 22–23.

    Google Scholar 

  2. Walker, L. P., et al. (1993) Biotech. Bioeng. 42, 1019–1028.

    Article  CAS  Google Scholar 

  3. Teeri, T. T. (1997), Trends Biotech. 15, 160.

    Article  Google Scholar 

  4. Walker, L. P., et al. (1992), Biotech. Bioeng. 40, 1019–1026.

    Article  CAS  Google Scholar 

  5. Irwin, D. C., Spezio, M., Walker, L. P., and Wilson, D. B. (1993), Biotech. Bioeng. 42, 1002–1013.

    Article  CAS  Google Scholar 

  6. Davies, G. J., et al. (1996), Acta Crystallographica D52, 7–17.

    CAS  Google Scholar 

  7. Henrissat, B., et al. (1989), Gene (Amst.) 81, 83–95.

    CAS  Google Scholar 

  8. Juy, M., et al. (1992), Nature 357, 89–91.

    Article  CAS  ADS  Google Scholar 

  9. Davies, G. J., et al. (1993), Nature 365, 362–364.

    Article  PubMed  CAS  ADS  Google Scholar 

  10. Takashima, S., Nakamura, A., Masaki, H., and Uozumi, T. (1996), Biosci. Biotech. Biochem. 60(1), 77–82.

    Article  CAS  Google Scholar 

  11. Kraulis, P. J., et al. (1989), Biochemistry 28, 7241–7257.

    Article  PubMed  CAS  Google Scholar 

  12. Dalbøge, H. and Heldt-Hansen, H. P. (1994), Mol. Gen. Genet. 243, 253–260.

    Article  PubMed  Google Scholar 

  13. Azevedo, Mde O., et al. (1990), J. Gen. Microbiol. 136, 120–123.

    Google Scholar 

  14. Cui, Z., et al. (1992), Biosci. Biotechnol. Biochem. 56, 1230–1235.

    PubMed  CAS  Google Scholar 

  15. Huang, J., et al. (1992), J. Bacteriol. 174, 1314–1323.

    PubMed  CAS  Google Scholar 

  16. Ong, E., et al. (1989), Trends Biotechnol. 7, 239–243.

    Article  CAS  Google Scholar 

  17. Divne, C., et al. (1994), Science 265, 524–528.

    Article  PubMed  CAS  ADS  Google Scholar 

  18. Rouvinen, J., et al. (1990), Science 249, 380–386.

    Article  PubMed  CAS  ADS  Google Scholar 

  19. Spezio, M., et al. (1993), Biochemistry 32, 9906–9916.

    Article  PubMed  CAS  Google Scholar 

  20. Sakon, J., Irwin, D., Wilson, D. B., and Karplus, P., A. (1997), Nat. Struct. Biol. 4, 810–818

    Article  PubMed  CAS  Google Scholar 

  21. Irwin, D. C., et al. (1998), J. Bacteriol. 180(7), 1709–1714.

    PubMed  CAS  Google Scholar 

  22. Sacco, M., Millet, J., and Aubert, J. P. (1984), Ann. Microbiol. (Inst. Pasteur) 135A, 485–488.

    Article  CAS  Google Scholar 

  23. Curry, C., et al. (1988), Appl. Environ. Microbiol. 54, 476–484.

    PubMed  CAS  Google Scholar 

  24. Konstantinidis, A. K., et al. (1993), Biochem. J. 291, 883.

    PubMed  CAS  Google Scholar 

  25. Stemmer, W. P. C. (1994), Nature 370, 389–391.

    Article  PubMed  CAS  ADS  Google Scholar 

  26. Stemmer, W. P. C. (1996), Nat. Biotechnol. 14, 315–319.

    Article  PubMed  Google Scholar 

  27. Stemmer, W. P. C. (1995), Biotechnology 13, 549–553.

    Article  CAS  Google Scholar 

  28. Matsumura, I. and Ellington, A. D. (1996), Nat. Biotechnol. 14, 366.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, J. H., Dawes, G., and Stemmer, W. P. C. (1997), Proc. Natl. Acad. Sci. USA 94, 4504–4509.

    Article  PubMed  CAS  ADS  Google Scholar 

  30. Cleland, J. L. and Craik, C. (1996), in Protein Engineering Principles and Practice, Wyley-Liss, New York, NY, pp. 22.

    Google Scholar 

  31. Taylor, J. S., Teo, B., Wilson, D. B., and Brady, J. W. (1988), Prot. Eng. 8(11), 1145–1152.

    Article  Google Scholar 

  32. Brooks, C. L., Karplus, M. and Pettit, B. M. (1988), in Proteins: A Theoretical Perspective of Dynamics, Structure an Thermodynamics, Adv. Chem. Phys., Vol. 71, Wiley-Interscience, New York, NY.

    Google Scholar 

  33. MacKerell, A. D., Bashford, D., et al (1998), J. Physi. Chem. 102, 3586–3616.

    CAS  Google Scholar 

  34. Palma, R., Zuccato, P., et al. (2000), in Glycosyl Hydrolases in Biomass Conversion. Himmel, M. E., ed., American Chemical Society, Washington, DC.

    Google Scholar 

  35. Van Gunsteren, W. F., and Berendsen, H. J. C. (1977) Mol. Physiol. 34(5), 1311–1327.

    Article  Google Scholar 

  36. Bayer, A. E., et al. (1998) in Carhohydrases from Trichoderma reesei and Other Microorganisms. Claeyssens, M., Nerinckx, W., and Piens, K., eds., The Royal Society of Chemistry, pp. 39–65.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Escovar-Kousen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escovar-Kousen, J.M., Wilson, D. & Irwin, D. Integration of computer modeling and initial studies of site-directed mutagenesis to improve cellulase activity on Cel9A from Thermobifida fusca . Appl Biochem Biotechnol 113, 287–297 (2004). https://doi.org/10.1385/ABAB:113:1-3:287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:113:1-3:287

Index Entries

Navigation