Advertisement

Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 233–250 | Cite as

Properties of a recombinant β-glucosidase from polycentric anaerobic fungus Orpinomyces PC-2 and its application for cellulose hydrolysis

  • Xin-Liang LiEmail author
  • Lars G. Ljungdahl
  • Eduardo A. Ximenes
  • Huizhong Chen
  • Carlos R. Felix
  • Michael A. Cotta
  • Bruce S. Dien
Article

Abstract

A β-glucosidase (BglA, EC 3.2.1.21) gene from the polycentric anaerobic fungus Orpinomyces PC-2 was cloned and sequenced. The enzyme containing 657 amino acid residues was homologous to certain animal, plant, and bacterial β-glucosidases but lacked significant similarity to those from aerobic fungi. Neither cellulose- nor protein-binding domains were found in BglA. When expressed in Saccharomyces cerevisiae, the enzyme was secreted in two forms with masses of about 110 kDa and also found in two forms associated with the yeast cells. K m and V max values of the secreted BglA were 0.762 mM and 8.20 µmol/(min·mg), respectively, with p-nitrophenyl-β-d-glucopyranoside (pNPG) as the substrate and 0.310 mM and 6.45 µmol/(min·mg), respectively, for the hydrolysis of cellobiose. Glucose competitively inhibited the hydrolysis of pNPG with a K i of 3.6 mM. β-Glucosidase significantly enhanced the conversion of cellulosic materials into glucose by Trichoderma reesei cellulase preparations, demonstrating its potential for use in biofuel and feedstock chemical production.

Index Entries

Cellulose cellulase β-glucosidase Orpinomyces cellobiase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ohmiya, K., Sakka, K., Karita, S., and Kimura, T. (1997), Gen. Eng. Rev. 14, 365–414.Google Scholar
  2. 2.
    Filho, E. X. F. (1996), Can. J. Microbiol. 42, 1–5.CrossRefGoogle Scholar
  3. 3.
    Chen, H., Li, X.-L., and Ljungdahl, L. G. (1994), Appl. Environ. Microbiol. 60, 64–70.PubMedGoogle Scholar
  4. 4.
    Borneman, W. S., Akin, D. E., and Ljungdahl, L. G. (1989), Appl. Environ. Microbiol. 55, 1066–1073.PubMedGoogle Scholar
  5. 5.
    Li, X.-L., Chen, H., and Ljungdahl, L. G. (1997), Appl. Environ. Microbiol. 63, 628–635.PubMedGoogle Scholar
  6. 6.
    Li, X.-L., Chen, H., and Ljungdahl, L. G. (1997), Appl. Environ. Microbiol. 63, 4721–4728.PubMedGoogle Scholar
  7. 7.
    Chen, H., Li, X.-L., Blum, D. L., and Ljungdahl, L. G. (1998), FEMS Microbiol. Lett. 159, 63–68.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, H., Li, X.-L., Blum, D. L., Ximenes, E. A., and Ljungdahl, L. G. (2003), Appl. Biochem. Biotechnol. 105–108, 775–785.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen, H., Li, X.-L., and Ljungdahl, L. G. (1997), J. Bacteriol. 179, 6028–6034.PubMedGoogle Scholar
  10. 10.
    Blum, D. L., Li, X.-L., Chen, H., and Ljungdahl, L. G. (1999), Appl. Environ. Microbiol. 65, 3990–3995.PubMedGoogle Scholar
  11. 11.
    Chen, H., Li, X.-L., and Ljungdahl, L. G. (1995), Proc. Natl. Acad. Sci. USA 9, 2587–2591.CrossRefADSGoogle Scholar
  12. 12.
    Herr, D., Baumer, F., and Dellweg, H. (1978), Appl. Microbiol. Biotechnol. 5, 29–36.CrossRefGoogle Scholar
  13. 13.
    Chen, H., Ximenes, E. A., Li, X.-L., and Ljungdahl, L. G. (1999), in Cellulose Degradation, Ohmiya, K., Hayashi, K., Sakka, K., Kobayashi, Y., Karita, S., and Kimura, T., eds., Uni Publishers, Tokyo, Japan, pp. 173–181.Google Scholar
  14. 14.
    Laemmli, U. K. (1970), Nature (Lond.) 227, 680–685.CrossRefADSGoogle Scholar
  15. 15.
    Fairbanks, G., Steak, T. S., and Wallach, D. F. H. (1971), Biochemistry 10, 2606–2616.PubMedCrossRefGoogle Scholar
  16. 16.
    Rutenburg, A. M., Goldbarg, J. A., Rutenburg, S. H., and Lang, R. T. (1960), J. Histochem. Cytochem. 8, 268–272.PubMedGoogle Scholar
  17. 17.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Anal. Chem. 28, 350–356.CrossRefGoogle Scholar
  18. 18.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–273.PubMedGoogle Scholar
  19. 19.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  20. 20.
    Li, X.-L., Chen, H., He, Y., Blum, D. L., and Ljungdahl, L. G. (1997), in Abstracts of 97 th General Meeting of the American Society for Microbiology, American Society for Microbiology, Washington, DC, p. 424.Google Scholar
  21. 21.
    Steenbakkers, P. J. M., Harhangi, H. R., Bosscher, M. W., van der Hooft, M. M. C., Keltjens, J. T., van der Drift, C., Vogels, G. D., and Op den Camp, H. J. M. (2003), Biochem. J. 370, 963–970.PubMedCrossRefGoogle Scholar
  22. 22.
    Steenbakkers, P. J. M., Li, X.-L., Ximenes, E. A., Arts, J. G., Chen, H., Ljungdahl, G. L., and Op den Camp, H. J. M. (2001), J. Bacteriol. 183, 5325–5333.PubMedCrossRefGoogle Scholar
  23. 23.
    Bǵuin, P. and Lemaire, M. (1996), Crit. Rev. Biochem. Mol. Biol. 31, 201–236.Google Scholar
  24. 24.
    Fannuti, G., Ponyi, T., Black, G. W., Hazlewood, G. P., and Gilbert, H. J. (1995), J. Biol. Chem. 270, 29,314–29,322.Google Scholar
  25. 25.
    von Heijne, G. (1986), Nucleic Acids Res. 14, 4683–4690.CrossRefGoogle Scholar
  26. 26.
    Harhangi, H. R., Steenbakkers, P. J. M., Akmanova, A., Jetten, M. S. M., van der Drift, C., and Op den Camp, H. J. M. (2002), Biochem. Biophys. Acta 1574, 293–303.PubMedGoogle Scholar
  27. 27.
    Hays, W. S., Jenison, S. A., Yamada, T., Pastuszyn, A., and Glew, R. H. (1996), Biochem. J. 319, 829–837.PubMedGoogle Scholar
  28. 28.
    Inoue, M., Shibuya, M., Yamamoto, K., and Ebizuka, Y. (1996), FEBS Lett. 389, 273–277.PubMedCrossRefGoogle Scholar
  29. 29.
    Grbnitz, F., Seiss, M., Rüknagel, K. P., and Staudenbauer, W. L. (1991), Eur. J. Biochem. 200, 301–309.CrossRefGoogle Scholar
  30. 30.
    Paavilainen, S., Hellman, J., and Korpela, T. (1993), Appl. Environ. Microbiol. 59, 927–932.PubMedGoogle Scholar
  31. 31.
    Breves, R., Bronnenmeier, K., Wild, N., Lottspeich, F., Staudenbauer, W. L., and Hofemeister, J. (1997), Appl. Environ. Microbiol. 63, 3902–3910.PubMedGoogle Scholar
  32. 32.
    Liebl, W., Gabelsberger, J., and Schleifer, K.-H. (1994), Mol. Gen. Genet. 242, 111–115.PubMedGoogle Scholar
  33. 33.
    Henrissat, B. and Bairoch, A. (1993), Biochem. J. 293, 781–788.PubMedGoogle Scholar
  34. 34.
    Sanz-Aparicio, J., Hermoso, J. A., Martinez-Ripoll, M., Lequerica, J. L., and Polaina, J. (1998), J. Mol. Biol. 275, 491–502.PubMedCrossRefGoogle Scholar
  35. 35.
    Penttilä, M. E., André, L., Saloheimo, M., Lehtovaara, P., and Knowles, J. K. C. (1987), Yeast 3, 175–185.PubMedCrossRefGoogle Scholar
  36. 36.
    Penttilä, M. E., André, L., Lehtovaara, P., Bailey, M., Teeri, T. T., and Knowles, J. K. C. (1988), Gene 63, 103–112.PubMedCrossRefGoogle Scholar
  37. 37.
    Cummings, C. and Fowler, T. (1996), Curr. Genet. 29, 227–233.PubMedGoogle Scholar
  38. 38.
    Li, X.-L. and Ljungdahl, L. G. (1996), Appl. Environ. Microbiol. 62, 209–213.PubMedGoogle Scholar
  39. 39.
    Rothstein, S. J., Lanhners, K. N., Lazarus, C. M., Baulcombe, D. C., and Gatenby, A. A. (1987), Gene 55, 353–356.PubMedCrossRefGoogle Scholar
  40. 40.
    van Rensburg, P., Van Zyl, W. H., and Pretorius, I. S. (1998), Yeast 14, 67–76.PubMedCrossRefGoogle Scholar
  41. 41.
    Ngsee, J. K., Hansen, W., Walter, P., and Smith, M. (1989), Mol. Cell. Biol. 9, 3400–3410.PubMedGoogle Scholar
  42. 42.
    Orlean, P., Kuranda, M. J., and Albright, C. F. (1991), Methods Enzymol. 194, 682–696.PubMedGoogle Scholar
  43. 43.
    Herbaud, M. and Fevre, M. (1990), Appl. Environ. Microbiol. 56, 3164–3169.Google Scholar
  44. 44.
    Teunissen, M. J., Lahaye, D. H. T. P., Huis In’t Veld, J. H. J., and Vogels, G. D. (1992), Arch. Microbiol. 158, 276–281.CrossRefGoogle Scholar
  45. 45.
    Li, X.-L. and Calza, R. E. (1991), Enzyme Microb. Technol. 13, 622–628.CrossRefGoogle Scholar
  46. 46.
    Li, X.-L. and Calza, R. E. (1991), Biochem. Biophys. Acta 1080, 148–154.PubMedGoogle Scholar
  47. 47.
    Ward, M. (1989), in EMBO-ALKO Workshop on Molecular Biology of Filamentous Fungi, Nevalainen, H. and Pentillä, M., eds., Foundation for Biotechnical and Industrial Fermentation Research, Espoo, Finland, pp. 119–128.Google Scholar
  48. 48.
    Archer, D. B. and Peberdy, J. F. (1997), Crit. Rev. Biotechnol. 17, 273–306.PubMedCrossRefGoogle Scholar
  49. 49.
    Ohmiya, K., Shirai, M., Kurachi, Y., and Shimizi, S. (1985), J. Bacteriol. 161, 432–434.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Xin-Liang Li
    • 1
    Email author
  • Lars G. Ljungdahl
    • 2
  • Eduardo A. Ximenes
    • 3
  • Huizhong Chen
    • 4
  • Carlos R. Felix
    • 3
  • Michael A. Cotta
    • 1
  • Bruce S. Dien
    • 1
  1. 1.Fermentation Biotechnology Research UnitNational Center for Agricultural Utilization Research, USDA/ARSPeoria
  2. 2.Department of Biochemistry & Molecular Biology and Center for Biological Resource Recovery, Life Science BuildingUniversity of GeorgiaAthens
  3. 3.Laboratorio de Enzimlogia, Departamento de Biologia CelularUniversidade de BrasiliaAsa Norte, Brasilia-DFBrazil
  4. 4.Division of MicrobiologyNational Center for Toxicological Research, US Food and Drug AdministrationJefferson

Personalised recommendations