Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 201–211 | Cite as

Effect of pH on cellulase production of Trichoderma ressei RUT C30

  • Tamás Juhász
  • Zsolt Szengyel
  • Nóra Szijártó
  • Kati Réczey


Currently, the high market price of cellulases prohibits commercialization of the lignocellulosics-to-fuel ethanol process, which utilizes enzymes for saccharification of cellulose. For this reason research aimed at understanding and improving cellulase production is still a hot topic in cellulase research. Trichoderma reesei RUT C30 is known to be one of the best hyper producing cellulolytic fungi, which makes it an ideal test organism for research. New findings could be adopted for industrial strains in the hope of improving enzyme yields, which in turn may result in lower market price of cellulases, thus making fuel ethanol more cost competitive with fossil fuels. Being one of the factors affecting the growth and cellulase production of T. reesei, the pH of cultivation is of major interest. In the present work, numerous pH-controlling strategies were compared both in shake-flask cultures and in a fermentor. Application of various buffer systems in shake-flask experiments was also tested. Although application of buffers resulted in slightly lower cellulase activity than that obtained in non-buffered medium, β-glucosidase production was increased greatly.

Index Entries

Cellulase production Trichoderma reesei RUT C30 pH profiling β-glucosidase shake flask fermentor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ryu, D. D. Y. and Mandels, M. (1980), Enzyme Microb. Technol. 2, 91–102.CrossRefGoogle Scholar
  2. 2.
    Kanson, A. L., Essam, S. A., and Zeinat, A. N. (1999), Polym. Degrad. Stabil. 63, 273–278.CrossRefGoogle Scholar
  3. 3.
    Mukhopadhyay, S. and Nandi, B. (1999), J. Sci. Ind. Res. 58, 107–111.Google Scholar
  4. 4.
    Wayman, M. and Chen, S. (1992), Enzyme Microb. Technol. 14, 825–831.CrossRefGoogle Scholar
  5. 5.
    Kadam, K. L. and Keutzer, W. J. (1995), Biotechnol. Lett. 17, 1111–1114.CrossRefGoogle Scholar
  6. 6.
    Tangnu, S. K., Blanch, H. W., and Wilke, C. R. (1981), Biotechnol. Bioeng. 23, 1837–1849.CrossRefGoogle Scholar
  7. 7.
    Hendy, N. A., Wilke, C. R., and Blanch, H. W. (1984), Enzyme Microb. Technol. 6, 73–77.CrossRefGoogle Scholar
  8. 8.
    Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R. M., and Steinmller, H. (1987), Appl. Microbiol. Biotechnol. 26, 485–494.CrossRefGoogle Scholar
  9. 9.
    Mukhopadhyay, S. N. and Malik, R. K. (1980), Biotechnol. Bioeng. 22, 2237–2250.CrossRefGoogle Scholar
  10. 10.
    Mandels, M. and Weber, J. (1969), Adv. Chem. Ser. 95, 391–414.CrossRefGoogle Scholar
  11. 11.
    Sternberg, D. (1976), Biotechnol. Bioeng. Symp. 6(6), 35–53.PubMedGoogle Scholar
  12. 12.
    Chahal, D. S., McGuire, S., Pikor, H., and Noble, G. (1982), Biomass 2(2), 127–137.CrossRefGoogle Scholar
  13. 13.
    Duff, S. J. B., Cooper, D. G., and Fuller, O. M. (1987), Enzyme Microb. Technol. 9, 47–51.CrossRefGoogle Scholar
  14. 14.
    Yu, X.-B., Hyun S. Y., and Yoon-Mo, K. (1998), J. Microbiol. Biotechnol. 8, 208–213.CrossRefGoogle Scholar
  15. 15.
    Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6(6), 21–33.PubMedGoogle Scholar
  16. 16.
    Berghem, L. E. E. and Petterson, L. G. (1976), Eur. J. Biochem. 46, 295–305.CrossRefGoogle Scholar
  17. 17.
    Andreotti, R. E., Mandels, M., and Roche, C. (1977), in Bioconversion of Cellulosic Substrates into Energy, Chemicals and Microbial Protein: Proceedings of Bioconversion Symposium, Ghose, T. K., ed., Indian Institute of Technology, Delhi, pp. 249–267.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Tamás Juhász
    • 1
  • Zsolt Szengyel
    • 1
  • Nóra Szijártó
    • 1
  • Kati Réczey
    • 1
  1. 1.Department of Agricultural Chemical TechnologyBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations