Advertisement

Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 189–199 | Cite as

Ester synthesis catalyzed by Mucor miehei lipase immobilized on magnetic polysiloxane-polyvinyl alcohol particles

  • Laura M. Bruno
  • José L. de Lima Filho
  • Eduardo H. de M. Melo
  • Heizir F. de CastroEmail author
Article

Abstract

Mucor miehei lipase was immobilized on magnetic polysiloxane-polyvinyl alcohol particles by covalent binding with high activity recovered. The performance of the resulting immobilized biocatalyst was evaluated in the synthesis of flavor esters using heptane as solvent. The impact on reaction rate was determined for enzyme concentration, molar ratio of the reactants, carbon chain length of the reactants, and alcohol structure. Ester synthesis was maximized for substrates containing excess acyl donor and lipase loading of 25 mg/mL. The biocatalyst selectivity for the carbon chain length was found to be different concerning the organic acids and alcohols. High reaction rates were achieved for organic acids with 8 or 10 carbons, whereas increasing the alcohol carbon chain length from 4 to 8 carbons gave much lower esterification yields. Optimal reaction rate was determined for the synthesis of butyl caprylate (12 carbons). Esterification performance was also dependent on the alcohol structure, with maximum activity occurring for primary alcohol. Secondary and tertiary alcohols decreased the reaction rates by more than 40%.

Index Entries

Lipase sol-gel matrix polysiloxane-polyvinyl alcohol esterification activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yahya, A. R. M., Anderson, W. A., and Moo-Young, M. (1998), Enzyme Microb. Technol. 23, 438–450.CrossRefGoogle Scholar
  2. 2.
    Balcao, V. M., Paiva, A. L., and Malcata, F. X. (1996), Enzyme Microb. Technol. 18, 392–416.PubMedCrossRefGoogle Scholar
  3. 3.
    Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., and Soccol, V. T. (1999), Biotechnol. Appl. Biochem. 29, 119–131.PubMedGoogle Scholar
  4. 4.
    Castro, H. F. and Anderson, W. A. (1995), Quim Nova 18, 544–554.Google Scholar
  5. 5.
    Villeneuve, P., Muderhwa, J. M., Graille, J., and Hass, M. J. (2000), J. Mol. Cat. B Enzymatic 9(4–6), 113–148.CrossRefGoogle Scholar
  6. 6.
    Gitlesen, T., Baucer, M., and Adlercreutz, P. (1997), Biochim. Biophys. Acta 1345, 188–196.PubMedGoogle Scholar
  7. 7.
    Oliveira, P. C., Alves, G. M., and de Castro, H. F. (2000), Quit Nova 23, 632–636.Google Scholar
  8. 8.
    Carneiro-Leão, A. M. A., Oliveira, E. A., and Carvalho, Jr., L. B. (1991), Appl. Biochem. Biotechnol. 31, 53–58.CrossRefGoogle Scholar
  9. 9.
    Soares, C. M. F., de Castro, H. F., Moraes, F. F., and Zanin, G. M. (1999), Appl. Biochem. Biotechnol. 77–79, 745–757.PubMedCrossRefGoogle Scholar
  10. 10.
    Keeling-Tucker, T., Rakic, M., Spong, C., and Brennan, J. D. (2000), Chem. Mater. 12, 3695–3704.CrossRefGoogle Scholar
  11. 11.
    Reetz, M. T., Zonta, A., and Simpelkamp, J. (1996), Biotechnol. Bioeng. 49, 527–534.CrossRefGoogle Scholar
  12. 12.
    Lima Barros, A. E., Almeida, A. M. P., Carvalho, Jr., L. B., and Azevedo, W. M. (2002), Braz. J. Med. Biol. Res. 35, 459–463.PubMedCrossRefGoogle Scholar
  13. 13.
    Bruno, L. M. (2003), PhD thesis, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235; Cidade Universitária, Recife, PE, CEP, Brazil.Google Scholar
  14. 14.
    Dias, S. F., Vilas-Boas, L., Cabral, J. M. S., and Fonseca, N. M. R. (1991), Biocatalysis 5, 21–34.Google Scholar
  15. 15.
    de Castro, H. F., Pereira, E. B., and Anderson, W. A. (1996), J. Brazi. Chem. Soc. 7, 219–224.Google Scholar
  16. 16.
    de Castro, H. F., Oliveira, P. C., and Soares, C. M. F. (1997), Cienc. Tecnol. Aliment. 17, 237–241.Google Scholar
  17. 17.
    Pereira, E. B., de Castro, H. F., Moraes, F. F., and Zanin, G. M. (2002), Appl. Biochem. Biotechnol. 98–100, 977–986.PubMedCrossRefGoogle Scholar
  18. 18.
    Langrand, G., Rondon, N., Triantaphylides, C., and Baratti, J. (1990), Biotechnol. Lett. 12, 581–596.CrossRefGoogle Scholar
  19. 19.
    Miller, C., Austin, H., Posorske, L., and Gonzlez, J. (1988), JAOCS 65, 927–931.CrossRefGoogle Scholar
  20. 20.
    Selmi, B., Gontier, E., Ergan, F., and Thomas, D. (1998), Enzyme Microb. Technol. 23, 182–186.CrossRefGoogle Scholar
  21. 21.
    Aguiar, C. L., Moreira, M. R. V., and de Castro, H. F. (2001), Cienc. Tecnol. Aliment. 3, 134–139.Google Scholar
  22. 22.
    Sinestra, J. V. (1996), in Engineering of/with Lipases. Malcata, F. X., ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 73–101.Google Scholar
  23. 23.
    Manjon, A., Iborra, J. L., and Arocas, A. (1991), Biotechnol. Lett. 13, 339–344.CrossRefGoogle Scholar
  24. 24.
    Antczak, T., Mrowiec-Bialon, J., Bielecki, S., Jarrzebski, A. I., and Galas, I. (1997), Biotechnol. Techniques 11, 9–11.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Laura M. Bruno
    • 1
  • José L. de Lima Filho
    • 2
  • Eduardo H. de M. Melo
    • 2
  • Heizir F. de Castro
    • 3
    Email author
  1. 1.Embrapa Agroindústria TropicalRua Dra. Sara MesquitaFortaleza-CEBrazil
  2. 2.Departmento de Bioquímica, Laboratório de Imunopatologia Keizo AssamiUniversidade Federal de PernambucoRecife-PEBrazil
  3. 3.Departmento de Engenharia QuímicaFaculdade de Engenharia Química de LorenaLorena-SPBrazil

Personalised recommendations