Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 181–187 | Cite as

The effect of temperature, pressure, exposure time, and depressurization rate on lipase activity in SCCO2

  • Marcelo Lanza
  • Wagner Luís Priamo
  • José Vladimir Oliveira
  • Cláudio Dariva
  • Débora de Oliveira
Article

Abstract

We investigated the influence of temperature, pressure, exposure time, and decompression rate on lipase activity in high-pressure CO2 medium. A high-pressure, variable-volume view cell was employed in the experiments, varying the temperature from 30 to 70°C in the pressure range of 70–250 bar at various high-pressure exposure times (60–360 min) and adopting several decompression rates (10–200 kg/[m3·min]). The results obtained show that an increase in temperature and density led to an enhancement of enzyme activity losses while the decompression rates had a weak influence on enzyme inactivation.

Index Entries

Lipase activity high pressure decompression rate CO2 SCCO2 exposure time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oliveira, D. and Oliveira, J. V. (2001), J. Supercritical Fluids 19, 141–148.CrossRefGoogle Scholar
  2. 2.
    Basri, M., Yunus, W.M. W., Razak, C. N. A., Salleh, A. B., and Yoong, W. S. (1996), J. Chem. Technol. Biotechnol. 66, 169–173.CrossRefGoogle Scholar
  3. 3.
    Habulin, M., Krmelj, V. and Knez, Z. (1999), Proceedings of the 5 th Conference on Supercritical Fluids and Their Applications, Verona, Italy, pp. 331–338.Google Scholar
  4. 4.
    Oliveira, J. V. and Oliveira, D. (2000), Ind. Eng. Chem. Res. 39, 4450–4458.CrossRefGoogle Scholar
  5. 5.
    De Cordt, S., Ludikhuyze, L., Weemaes, C., Hendrickx, M., Heremans, K., and Tolback, P. (1996), High Pressure Biosci. Biotechnol. 1, 203–209.Google Scholar
  6. 6.
    Mozhaev, V. V., Kudryashova, E. V., and Bec, N. (1996), High Pressure Biosci. Biotechnol. 1, 221–227.Google Scholar
  7. 7.
    Aaltonen, O. (1999), Chem. Synthesis Using Supercritical Fluids 1, 414–419.Google Scholar
  8. 8.
    Habulin, M. and Knez, Z. (2001), J. Chem. Technol. Biotechnol. 76, 1260–1265.CrossRefGoogle Scholar
  9. 9.
    Castellari, M., Matricardi, L., Arfelli, G., Rovere, P., and Amati, A. (1997), Food Chem. 60, 647–651.CrossRefGoogle Scholar
  10. 10.
    Oliveira, D. and Alves, T. L. M. (1999), Appl. Biochem. Biotechnol. 77, 835–844.PubMedCrossRefGoogle Scholar
  11. 11.
    Oliveira, D. and Alves, T. L. M. (2000), Appl. Biochem. Biotechnol. 84, 59–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Steinberger, D. J. and Marr, T. G. R. (1999), in Proceedings of the 5 th Conference on Supercritical Fluids and Their Applications, pp. 339–346.Google Scholar
  13. 13.
    Cernia, E., Palocci, C., Celia, E. C. and Soro, S. (1999), in Proceedings of the 5 th Conference on Supercritical Fluids and Their Applications, pp. 325–330.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Marcelo Lanza
    • 1
  • Wagner Luís Priamo
    • 1
  • José Vladimir Oliveira
    • 1
  • Cláudio Dariva
    • 1
  • Débora de Oliveira
    • 1
  1. 1.Department of Food EngineeringURI-Campus de ErechimBrazil

Personalised recommendations