Advertisement

Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 173–180 | Cite as

Effect of temperature, moisture, and carbon supplementation on lipase production by solid-state fermentation of soy cake by Penicillium simplicissimum

  • Marco di LuccioEmail author
  • Fernando Capra
  • Najara P. Ribeiro
  • Gean D. L. P. Vargas
  • Denise M. G. Freire
  • Débora de Oliveira
Article

Abstract

The production of lipases by Penicillium simplicissimum using solid-state fermentation and soy cake as substrate was investigated. The effects of temperature, cake moisture, and carbon supplementation on lipase production were studied using a two-level experimental plan. Moisture, pH, and lipase activity were followed during fermentation. Statistical analysis of the results was performed to evaluate the effect of the studied variables on the maximum lipase activity. Incubation temperature was the variable that most affected enzyme activity, showing a negative effect. Moisture and carbon supplementation presented a positive effect on activity. It was possible to obtain lipase activity as high as 21 U/g of dry cake in the studied range of process variables.

Index Entries

Solid-state fermentation lipase Penicillium soy cake olive oil moisture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jung, F., Cammarota, M. C., and Freire, D. M. G. (2002), Biotechnol. Lett. 24, 1797–1802.CrossRefGoogle Scholar
  2. 2.
    Cammarota, M. C., Teixeira, G. A., and Freire, D. M. G. (2001), Biotechnol. Lett. 23, 1591–1595.CrossRefGoogle Scholar
  3. 3.
    Castilho, L. R., Polato, C. M. S., Baruque, E. A., and Sant’Anna, G. L., Jr. (2000), Biochem. Eng. J. 4, 239–247.CrossRefGoogle Scholar
  4. 4.
    Del Bianchi, V. L., Moraes, I. O. and Capalbo, D. M. F. (2001), in Biotecnologia Industrial: Engenharia Bioquímica, vol. 3, Schmidell, W., Lima, U.A., Aquarone, E., and Borzani, W., eds., Edgard Blücher, São Paulo, Brazil.Google Scholar
  5. 5.
    Freire, D. M. G. (1996), PhD thesis, PEQ/COPPE/UFRJ, Rio de Janeiro, Brazil.Google Scholar
  6. 6.
    Freire, D. M. G., Gomes, P. M., Bon, E. P. S., and Sant’Anna, G. L., Jr. (1997), Revista Microbiologia 28(1), 6–12.Google Scholar
  7. 7.
    Leal, M. C. M. R. (2000), MS thesis, PEQ/COPPE/UFRJ, Rio de Janeiro, Brazil.Google Scholar
  8. 8.
    Pregnolatto, W., Pregnolatto, N. P. (coord.), and Rebocho, D. D. E. (ed.) (1985), Normas analíticas do Instituto Adolfo Lutz: vol. 1. Métodos químicos e físicios para análise de alimentos, 3rd Ed., Instituto Adolfo Lutz, São Paulo, Brazil.Google Scholar
  9. 9.
    MCT, Ministério da Ciênciae Tecnologia (Ministry of Science and Technology) (1985), Technical Report on Vegetable Oils, MCT.Google Scholar
  10. 10.
    Gombert, A. K., Pinto, A. L., Castilho, L. R., and Freire, D. M. G. (1999), Process Biochem. 35, 85–90.CrossRefGoogle Scholar
  11. 11.
    Palma, M. B., Pinto, A. L., Gombert, A. K., Seitz, K. H., Kivatinitz, S. C., Castilho, L. R., and Freire, D. M. G. (2000), Appl. Biochem. Biotechnol. 84–86, 1137–1145.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Marco di Luccio
    • 1
    Email author
  • Fernando Capra
    • 1
  • Najara P. Ribeiro
    • 1
  • Gean D. L. P. Vargas
    • 1
  • Denise M. G. Freire
    • 2
  • Débora de Oliveira
    • 1
  1. 1.Department of Food EngineeringURI-Campus de ErechimErechimBrazil
  2. 2.Department of Biochemistry-IQ/UFRJCentro de TecnologiaRio de JaneiroBrazil

Personalised recommendations