Advertisement

Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 137–144 | Cite as

Model based soft-sensor for on-line determination of substrate

  • Andréa M. Salgado
  • Rossana O. M. Folly
  • Belkis ValdmanEmail author
  • Francisco Valero
Article

Abstract

A software sensor for on-line determination of substrate was developed based on a model for fed-batch alcoholic fermentation process and on-line measured signals of ethanol, biomass, and feed flow. The ethanol and biomass signals were obtained using a colorimetric biosensor and an optical sensor developed in previous works that permitted determination of ethanol at a concentration of 0–40 g/L and biomass of 0–60 g/L. The volume in the fermentor could be continuously calculated using the total measured signal of the feed flow. The results obtained show that the model used is adequate for the proposed software sensor and determines continuously the substrate concentration with efficiency and security during the fermentation process.

Index Entries

Soft-sensor substrate alcohol fermentation ethanol biomass 

Nomenclature

ART

total reducing sugars (g/L)

Fe

feed flow to fermentor (L/h)

Kpp

inhibition constant of ethanol specific rate (g/L)

Kpx

inhibition constant of cell growth rate (g/L)

Ksp

saturation constant for specific ethanol production (g/L)

Ksx

saturation constant of substrate-microorganism (g/L)

P

ethanol concentration in fermentor (g/L)

S

substrate concentration (g/L)

Sa

substrate concentration in feed (g/L)

t

time (h)

V

volume of fermentor (L)

X

biomass concentration (g/L)

Yp/x

product yield coefficient based on biomass (g/g)

Yp/s

product yield coefficient based on substrate (g/g)

Yx/s

cell yield coefficient based on substrate (g/g)

μ

cell growth specific rate (h−1)

γ

ethanol production specific rate (g/[g·h])

Subscripts

ART

total reducing sugars (g/L)

o

initial

f

final

max

maximum value

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Warnes, M. R. (1996), Process Biochem. 31, 147–155.CrossRefGoogle Scholar
  2. 2.
    Court, J. R. (1988), Progress in Industrial Microbiology, vol. 25, Bushell, M. E., ed., Elsevier, Amsterdam, The Netherlands, p. 145.Google Scholar
  3. 3.
    Ebehard, O. V. (1992), Biotechnol. Bioeng. 40, 572–582.CrossRefGoogle Scholar
  4. 4.
    Tyagi, R. D., Du, Y. G., and Sreekrishnan, T. R. (1993), Process Biochem. 28, 259–267.CrossRefGoogle Scholar
  5. 5.
    Ferreira, L. S., De Souza, M. B., and Folly, R. O. M. (2001), Sens. Actuators B Chem. 75(3), 166–171.CrossRefGoogle Scholar
  6. 6.
    Miguel Martín, A., Santos, J. P., and Agapito, J. A. (2001), Sens. Actuators B Chem. 77(1–2), 468–471.CrossRefGoogle Scholar
  7. 7.
    Salgado, A. M., Folly, R. O. M., and Valdman, B. (2001), Sens. Actuators B Chem. 75(1–2), 24–28.CrossRefGoogle Scholar
  8. 8.
    Salgado, A. M., Folly, R. O. M., Valdman, B., and Valero, F (2000), Biotechnol. Lett. 22, 327–330.CrossRefGoogle Scholar
  9. 9.
    Folly, R. O. M., Ramirez, N. I., and Valdman, B. (1994), in Proceedings of the 5th International Symposium on Process System Engineering (PES/94), pp. 717–722.Google Scholar
  10. 10.
    Mayer, A. F. (1986), MS Thesis, Department of Engineering, Química EQ-UFRJ, Rio de Janeiro, Brazil.Google Scholar
  11. 11.
    Ghose, R. and Tyagi, B. (1984), Process Biochem. 19(4), 136–141.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Andréa M. Salgado
    • 1
  • Rossana O. M. Folly
    • 1
  • Belkis Valdman
    • 1
    Email author
  • Francisco Valero
    • 2
  1. 1.Departamento de Engenharia Química, Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
  2. 2.Departamento de D’Enginyeria Química, ETSEUniversitat Autonoma de BarcelonaBellaterraSpain

Personalised recommendations