Advertisement

Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 125–136 | Cite as

Development and application of an integrated system for monitoring ethanol content of fuels

  • Eliana M. Alhadeff
  • Andrea M. Salgado
  • Nei PereiraJr.
  • Belkis ValdmanEmail author
Article

Abstract

An automated flow injection analysis (FIA) system for quantifying ethanol was developed using alcohol oxidase, horseradish peroxidase, 4-aminophenazone, and phenol. A colorimetric detection method was developed using two different methods of analysis, with free and immobilized enzymes. The system with free enzymes permitted analysis of standard ethanol solution in a range of 0.05–1.0 g of ethanol/L without external dilution, a sampling frequency of 15 analyses/h, and relative SD of 3.5%. A new system was designed consisting of a microreactor with a 0.91-mL internal volume filled with alcohol oxidase immobilized on glass beads and an addition of free peroxidase, adapted in an FIA line, for continued reuse. This integrated biosensor-FIA system is being used for quality control of biofuels, gasohol, and hydrated ethanol. The FIA system integrated with the microreactor showed a calibration curve in the range of 0.05–1.5 g of ethanol/L, and good results were obtained compared with the ethanol content measured by high-performance liquid chromatography and gas chromatography standard methods.

Index Entries

Biosensors gasohol immobilized enzymes alcohol oxidase horseradish peroxidase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nogueira, L. A. H. (2002), The Evolution of Fuel Quality in Brazil, 17 th World Petroleum Congress, (Website: http://www.ANP.gov.br), retrieved November 09, 2002.Google Scholar
  2. 2.
    Szwarc, A. (2002), Ethanol Usage in Automotive Fuels, World Fuels Conference—Latin America & the Caribbean, (Website: http://www.chemweek.com/worldfuels/rio/pdf/1408_03.pdf), retrieved on October 11, 2002.Google Scholar
  3. 3.
    Schugerl, K. (2001), J. Biotechnol. 85, 49–173.CrossRefGoogle Scholar
  4. 4.
    Salgado, A. M., Folly, R. O. M., Valdman, B., Cós, O., and Valero, F. (2000), Biotechnol. Lett. 22, 327–330.CrossRefGoogle Scholar
  5. 5.
    Sarker, A. K., Ukeda, H., Kawana, D., and Sawamura, M. (2001), Food Res. Int. 34, 393–399.CrossRefGoogle Scholar
  6. 6.
    Setkus, A., Razumiené, J., Galdikas, A., Laurinavicius, Meskys, R., and Mironas, A. (2002), Sens. Actuators B Chem. 85, 1–9.CrossRefGoogle Scholar
  7. 7.
    Tkac, J., Vostiar, I., Gorton, L., Gemeiner, P., and Sturdik, E. (2003), Biosens. Bioelectron. 18, 1125–1134.PubMedCrossRefGoogle Scholar
  8. 8.
    Patel, N. G., Meier, S., Cammann, K., and Chemnitius, G. C. (2001), Sens. Actuators B Chem. 75, 101–110.CrossRefGoogle Scholar
  9. 9.
    Taniai, T., Sukurragawa, A., and Okitani, T. (2001), J. AOAC Int. 84(5), 1475–1483.PubMedGoogle Scholar
  10. 10.
    Rank, M., Gram, J., and Danielsson, B. (1993), Analytica Chimica Acta 281, 521–526.CrossRefGoogle Scholar
  11. 11.
    Gué, A.-M., Tap, H., Gros, P., and Maury, F. (2002), Sens. Actuators B Chem. 82, 227–232.CrossRefGoogle Scholar
  12. 12.
    ABNT. (1997), Brazilian Association of Technical Standards, NBR 13992.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Eliana M. Alhadeff
    • 1
  • Andrea M. Salgado
    • 1
  • Nei PereiraJr.
    • 1
  • Belkis Valdman
    • 1
    Email author
  1. 1.Departamento de Engenharia Química, Escola de Química, CT/UFRJ, Ilha do FundãoCidade UniversitáriaRio de Janeiro, RJBrasil

Personalised recommendations