Advertisement

Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 115–124 | Cite as

Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose

  • Nóra Szijártó
  • Zsolt Szengyel
  • Gunnar Lidén
  • Kati RéczeyEmail author
Article

Abstract

An economic process for the enzymatic hydrolysis of cellulose would allow utilization of cellulosic biomass for the production of easily fermentable low-cost sugars. New and more efficient fermentation processes are emerging to convert this biologic currency to a variety of commodity products with a special emphasis on fuel ethanol production. Since the cost of cellulase production currently accounts for a large fraction of the estimated total production costs of bioethanol, a significantly less expensive process for cellulase enzyme production is needed. It will most likely be desirable to obtain cellulase production on different carbon sources—including both polymeric carbohydrates and monosaccharides. The relation between enzyme production and growth profile of the microorganism is key for designing such processes. We conducted a careful characterization of growth and cellulase production by the soft-rot fungus Trichoderma reesei. Glucosegrown cultures of T. reesei Rut-C30 were subjected to pulse additions of Solka-floc (delignified pine pulp), and the response was monitored in terms of CO2 evolution and increased enzyme activity. There was an immediate and unexpectedly strong CO2 evolution at the point of Solka-floc addition. The time profiles of induction of cellulase activity, cellulose degradation, and CO2 evolution are analyzed and discussed herein.

Index Entries

Trichoderma reesei fermentation cellulase growth characterization cellulose hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wyk, J. P. H. (1999), Biomass Bioenergy 16, 239–242.CrossRefGoogle Scholar
  2. 2.
    Kheshgi, H. S., Prince, R. C., and Marland, G. (2000), Annu. Rev. Energ. Environ. 25, 199–244.CrossRefGoogle Scholar
  3. 3.
    Sun, Y. and Cheng, J. (2002), Bioresour. Technol. 83, 1–11.PubMedCrossRefGoogle Scholar
  4. 4.
    Bhat, M. K. (2000), Biotechnol. Adv. 18, 355–383.PubMedCrossRefGoogle Scholar
  5. 5.
    Himmel, M. E., Ruth, M. F., and Wyman, C. E. (1999), Curr. Opin. Biotechnol. 10, 358–364.PubMedCrossRefGoogle Scholar
  6. 6.
    Persson, I., Tjerneld, F., and Hahn-Hägerdal, B. (1991), Process Biochem. 26, 65–74.CrossRefGoogle Scholar
  7. 7.
    Beguin, P. and Aubert, J. P. (1994), FEMS Microbiol. Rev. 13, 25–28.PubMedCrossRefGoogle Scholar
  8. 8.
    Tolan, J. S. and Foody, B. (1999), in Advances in Biochemical Engineering/Biotechnology, vol. 65, Scheper, T., ed., Springer-Verlag, Berlin, Germany, pp. 40–67.Google Scholar
  9. 9.
    Yu, X. B., Hyun, S. Y., and Yoon-Mo, K. (1998), J. Microbiol. Biotechnol. 8, 208–213.CrossRefGoogle Scholar
  10. 10.
    Ilmén, M., Saloheimo, A., Onnela, M.-L., and Pentillä, M. E. (1997), Appl. Environ. Microbiol. 63, 1298–1306.PubMedGoogle Scholar
  11. 11.
    Kubicek, C. P., Messner, R., Cruber, F., Mach, R. L., and Kubicek-Pranz, E. M. (1993), Enzyme Microb. Technol. 15, 90–99.PubMedCrossRefGoogle Scholar
  12. 12.
    Suto, M. and Tomita, F. (2001), J. Biosci. Bioeng. 92, 305–311.PubMedCrossRefGoogle Scholar
  13. 13.
    Mandels, M. and Weber, J. (1969), Adv. Chem. Ser. 95, 391–414.CrossRefGoogle Scholar
  14. 14.
    Bigelow, M. and Wyman, C. E. (2002), Appl. Biochem. Biotechnol. 98/100, 921–934.CrossRefGoogle Scholar
  15. 15.
    Miller, G. (1959), Anal. Chem. 31, 426–28.CrossRefGoogle Scholar
  16. 16.
    Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–23.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  • Nóra Szijártó
    • 1
  • Zsolt Szengyel
    • 1
  • Gunnar Lidén
    • 2
  • Kati Réczey
    • 1
    Email author
  1. 1.Department of Agricultural Chemical TechnologyBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Department of Chemical EngineeringLund UniversityLundSweden

Personalised recommendations