Advertisement

Applied Biochemistry and Biotechnology

, Volume 113, Issue 1–3, pp 27–39 | Cite as

Pipeline transport of biomass

  • Amit Kumar
  • Jay B. Cameron
  • Peter C. FlynnEmail author
Article

Abstract

The cost of transporting wood chips by truck and by pipeline as a water slurry was determined. In a practical application of field delivery by truck of biomass to a pipeline inlet, the pipeline will only be economical at large capacity (>0.5 million dry t/yr for a one-way pipeline, and >1.25 million dry t/yr for a two-way pipeline that returns the carrier fluid to the pipeline inlet), and at medium to long distances (>75 km [one-way] and >470 km [two-way] at a capacity of 2 million dry t/yr). Mixed hardwood and softwood chips in western Canada rise in moisture level from about 50% to 67% when transported in water; the loss in lower heating value (LHV) would preclude the use of water slurry pipelines for direct combustion applications. The same chips, when transported in a heavy gas oil, take up as much as 50% oil by weight and result in a fuel that is >30% oil on mass basis and is about two-thirds oil on a thermal basis. Uptake of water by straw during slurry transport is so extreme that it has effectively no LHV. Pipeline-delivered biomass could be used in processes that do not produce contained water as a vapor, such as supercritical water gasification.

Index Entries

Wood chips pipeline biomass lower heating value straw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumar, A., Cameron, J. B., and Flynn, P. C. (2003), Biomass Bioenergy 24(6), 445–464.CrossRefGoogle Scholar
  2. 2.
    Cameron, J., Kumar, A., and Flynn, P. C. (2002), in Proceedings of the 12 th European Biomass Conference for Energy, Industry and Climate Protection, vol. 1, June 17–21, Amsterdam, The Netherlands, pp. 123–126.Google Scholar
  3. 3.
    Favreau, J. F. E. (1992), Technical report no. TR-105, Forest Engineering Research Institute of Canada, Canada.Google Scholar
  4. 4.
    Brebner, A. (1964), Can. J. Chem. Eng. 42, 139–142.Google Scholar
  5. 5.
    Elliott, D. R. (1960), Pulp Paper Mag. Canada 61, 170–175.Google Scholar
  6. 6.
    Wasp, E. J., Aude, T. C., Thompson, T. L., and Bailey, C. D. (1967), Tappi 50(7), 313–318.Google Scholar
  7. 7.
    Hunt, W.A. (1976), in Proceedings of Hydrotransport 4, 1976: 4 th International Conference on the Hydraulic Transport of Solids in Pipes, BHRA Fluid Engineering, Cranfield, UK, pp. 1–18.Google Scholar
  8. 8.
    Liu, H., Noble, J., Zuniga, R., and Wu, J. (1995), Report no. 95-1, Capsule Pipeline Research Center (CPRC), University of Missouri, Columbia.Google Scholar
  9. 9.
    Jenkins, B. M., Bakker, R. R., and Wei, J. B. (1996), Biomass Bioenergy 10(4), 177–200.CrossRefGoogle Scholar
  10. 10.
    Yoshida, Y., Dowaki, K., Matsumura, Y., Matsuhashi, R., Li, D., Ishitani, H. and Komiyama, H. (2003), Biomass Bioenergy 25(3), 257–272.CrossRefGoogle Scholar
  11. 11.
    Werther, J., Saenger, M., Haetge, E.-U., Ogada, T., and Siagi, Z. (2000), Prog. Energy Combust. Sci. 26, 1–27.CrossRefGoogle Scholar
  12. 12.
    Antal, M. J., Jr., Allen, S. G., Schulman, D. and Xu, X. (2000), Ind. Eng. Chem. Res. 39(11), 819–824.Google Scholar
  13. 13.
    Matsumura, Y., Xu, X., and Antal, M. J., Jr. (1997), Carbon 35(6), 819–824.CrossRefGoogle Scholar
  14. 14.
    Matsumura, Y., Minowa, T., Xu, X., Nuessle, F. W., Adschiri, T., and Antal, M. J., Jr. (1997), in Developments in Thermochemical Biomass Conversion, Bridgwater A. V. M. and Boocock, D. G. B., eds., Blackie Academic and Professional, London, UK, pp. 864–877.Google Scholar
  15. 15.
    RS Means Company. (2000), in Heavy Construction Data—14 th Annual Edition, Chandler, H. M., et al., eds.Google Scholar
  16. 16.
    Peters, M. S. and Timmerhaus, K. D. (1991), Plant Design and Economics for Chemical Engineers, 4th Ed., McGraw-Hill, New York, NY.Google Scholar

Copyright information

© Humana Press Inc. 2004

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations