Applied Biochemistry and Biotechnology

, Volume 112, Issue 3, pp 143–150 | Cite as

Kinetics and bioenergetics of Spirulina platensis cultivation by fed-batch addition of urea as nitrogen source

  • Carlos E. N. Sassano
  • João C. M. Carvalho
  • Luiz A. Gioielli
  • Sunao Sato
  • Paolo Torre
  • Attilio Converti
Original Articles

Abstract

The cyanobacterium Spirulina platensis was cultivated in bench-scale miniponds on bicarbonate/carbonate solutions using urea as nitrogen source. To minimize limitation and inhibition phenomena, urea was supplied semicontinuously using exponentially increasing feeding rates. The average growth rates obtained alternately varying the total mass of urea added per unit reactor volume (275<m T<725 mg/L) and the total feeding time (9<t T<15 d) clearly evidenced nitrogen limitation for m T<500 mg/L and excess nitrogen inhibition above this threshold. The time behavior of the specific growth rate at variable urea feeding patterns allowed estimation of the time-dependent Gibbsenergy dissipation for cell growth under the actual depletion conditions of fed-batch cultivations. Comparison of the yield of growth on Gibbs energy obtained using either urea or KNO3 pointed to the preference of S. platensis for the former nitrogen source, likely owing to more favorable bioenergetic conditions.

Index Entries

Spirulina platensis urea fed-batch cultivation kinetics bioenergetics microalgae production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Piorreck, M., Baasch, K. L., and Pohl, P. (1984), Phytochemistry 23, 207–213.CrossRefGoogle Scholar
  2. 2.
    Walach, M. R., Bazin, M. J., Pirt, S. J., and Balyuzi, H. H. M. (1987), Biotechnol. Bioeng. 29, 520–528.CrossRefGoogle Scholar
  3. 3.
    Mahajan, G. and Kamat, M. (1995), Appl. Microbiol. Biotechnol. 43, 466–469.CrossRefGoogle Scholar
  4. 4.
    Richmond, A. (1983), in Biotechnology, vol. 3, Rehm, H.-J. and Reed, G., eds., Verlag Chemie, Weinheim, Germany, pp. 109–143.Google Scholar
  5. 5.
    Cohen, Z. (1997), in Spirulina Platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology, Vonshak, A., ed., Taylor & Francis, London, pp. 175–204.Google Scholar
  6. 6.
    Durand-Chastel, H. (1980), Production and Use of Spirulina in Mexico, Elsevier Biomedical, Amsterdam, The Netherlands.Google Scholar
  7. 7.
    Deshnium, P., Paithoonrangsarid, K., Suphatrakul, A., Meesapyodsuk, D., Tanticharoen, M., and Cheevadhanarak, S. (2000), FEMS Microbiol. Lett. 184, 207–213.CrossRefGoogle Scholar
  8. 8.
    Babu, T. S., Kumar, A., and Warma, A. K. (1991), Plant Physiol. 95, 492–497.Google Scholar
  9. 9.
    Ciferri, O. and Tiboni, O. (1985), Microbiologia (Italy) 39, 503–526.Google Scholar
  10. 10.
    Stanca, D. and Popovici, E. (1996), Rev. Roum. Biol. 41, 25–31.Google Scholar
  11. 11.
    Cornet, J. F., Dussap, C. G., Cluzel, P., and Dubertret, G. (1992), Biotechnol. Bioeng. 40, 826–834.CrossRefGoogle Scholar
  12. 12.
    Paoletti, C., Pushparaj, B., and Tomaselli, L. (1975), in Atti del 17 Congresso Nazionale della Società Italiana di Microbiologia, Padova, Società Italiana di Microbiologia, Rome, Italy, pp. 833–839.Google Scholar
  13. 13.
    Schlösser, U. G. (1982), Ber. Deutsch Bot. Ges. 95, 181–276.Google Scholar
  14. 14.
    Boussiba, S. (1989), Plant Cell Physiol. 30, 303–308.Google Scholar
  15. 15.
    Funteu, F., Guet, C., Wu, B., and Trémoliéres, A. (1997), Plant Physiol. Biochem. 35, 63–71.Google Scholar
  16. 16.
    Pirt, S. J., Walach, M. R., and Bazin, M. J. (1987), Biotechnol. Bioeng. 24, 520–528.Google Scholar
  17. 17.
    Chen, F. and Zhang, Y. (1997), Enzyme Microb. Technol. 20, 221–224.CrossRefGoogle Scholar
  18. 18.
    Danesi, E. D. G., Rangel-Yagui, C. O., Carvalho, J. C. M., and Sato, S. (2002), Biomass Bioenergy 23, 261–269.CrossRefGoogle Scholar
  19. 19.
    Belay, A. (1997), in Spirulina Platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology, Vonshak, A., ed., Taylor & Francis, London, pp. 131–158.Google Scholar
  20. 20.
    Lynch, D. V. and Thompson, G. A. (1984), Plant Physiol. 74, 193–197.Google Scholar
  21. 21.
    Heijnen, J. J. (2001), in Basic Biotechnology, 2nd ed., Ratledge, C. and Kristiansen, B., eds., Cambridge University Press, Cambridge, UK, pp. 45–58.Google Scholar
  22. 22.
    Roels, J. A. (1983), Energetics and Kinetics in Biotechnology, Elsevier Biomedical, Amsterdam, The Netherlands.Google Scholar
  23. 23.
    Carvalho, J. C. M. and Sato, S. (2001), in Biotechnologia Industrial, vol. 2, Schmidell, W., Lima, U. A., Aquarone, E., and Borzani, W., eds., Edgar Blücher, São Paulo, Brazil, pp. 205–218.Google Scholar
  24. 24.
    Hatori, A. and Myers, J. (1966), Plant Physiol. 41, 1031–1036.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2004

Authors and Affiliations

  • Carlos E. N. Sassano
    • 1
  • João C. M. Carvalho
    • 1
  • Luiz A. Gioielli
    • 1
  • Sunao Sato
    • 1
  • Paolo Torre
    • 2
  • Attilio Converti
    • 2
  1. 1.Departmento de Tecnologia Bioquímico-FarmacêuticaUniversidade de São PauloSão Paulo, SPBrazil
  2. 2.Department of Chemical and Process Engineering “G.B. Bonino”University of GenoaGenoaItaly

Personalised recommendations