Skip to main content
Log in

A β-glucosidase from Sclerotinia sclerotiorum

Biochemical characterization and use in oligosaccharide synthesis

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous fungus Sclerotinia sclerotiorum, grown on a xylose medium, was found to excrete one β-glucosidase (β-glu x). The enzyme was purified to apparent homogeneity by ammonium sulfate precipitation, gel filtration, anion-exchange chromatography, and high-performance liquid chromatography (HPLC) gel filtration chromatography. Its molecular mass was estimated to be 130 kDa by HPLC gel filtration and 60 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, suggesting that β-glu x may be a homodimer. For p-nitrophenyl β-d-glucopyranoside hydrolysis, apparent K m and V max values were found to be 0.09 mM and 193 U/mg, respectively, while optimum temperature and pH were 55–60°C and pH 5.0, respectively. β-Glu x was strongly inhibited by Fe2+ and activated about 35% by Ca2+. β-Glu x possesses strong transglucosylation activity in comparison with commercially available β-glucosidases. The production rate of total glucooligosaccharides (GOSs) from 30% cellobiose at 50°C and pH 5.0 for 6 h with 0.6 U/mL of enzyme preparation was 80 g/L. It reached 105 g/L under the same conditions when using cellobiose at 350 g/L (1.023 M). Finally, GOS structure was determined by mass spectrometry and 13C nuclear magnetic resonance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lumsden, R. D. (1969), Phytopathology 59, 653–657.

    CAS  Google Scholar 

  2. Cooper, R. M. (1984), in Plant Disease: Infection, Damage and Loss, Wood, R. K. S. and Jelis, G. J., eds., Blackwell Scientific, Oxford, pp. 13–28.

    Google Scholar 

  3. Waksman, G. (1988), Biochem. Biophys. Acta 967, 82–86.

    PubMed  CAS  Google Scholar 

  4. Martel, M. B., Léoublon, R., and Fvère, M. (1998), FEMS Microbiol. Lett. 158, 133–138.

    Article  PubMed  CAS  Google Scholar 

  5. Mayer, A. M. (1989), Phytochemistry 28, 311–317.

    Article  Google Scholar 

  6. Guanta, Z. Y., Baynove, C. T., Tapiero, R. E., and Cordonnier, R. (1990), J. Agric. Food Chem. 38, 757–763.

    Article  Google Scholar 

  7. Guguen, Y., Chemardin, P., Pien, S., Arnaud, A., and Galzy, P. (1997), J. Biotech. 55, 151–156.

    Article  Google Scholar 

  8. Bhat, M. K. and Bhat, S. (1997), Biotechnol. Adv. 15, 583–620.

    Article  PubMed  CAS  Google Scholar 

  9. Kang, S. W., Ko, E. H., Lee, J. S., and Kim, S. W. (1999), Biotechnol. Lett. 21, 647–650.

    Article  CAS  Google Scholar 

  10. Nilsson, K. G. I. (1988), Trends Biotechnol. 6, 256–264.

    Article  CAS  Google Scholar 

  11. Vulfson, E. N., Rooma, P., and Law, B. A. (1990), Biotechnol. Lett. 12, 397–402.

    Article  CAS  Google Scholar 

  12. Boons, G. J. (1996), Tetrahedron 52, 1095–1121.

    Article  CAS  Google Scholar 

  13. Varki, A. (1993), Glycobiology 3, 97–130.

    Article  PubMed  CAS  Google Scholar 

  14. Monsan, P. and Paul, F. (1995), FEMS Microbiol. Rev. 16, 187–192.

    Article  CAS  Google Scholar 

  15. Gama, F. M. and Mota, M. (1998), Carbohydr. Polym. 37, 279–281.

    Article  CAS  Google Scholar 

  16. Palcic, M. M. (1999), Curr. Opin. Biotechnol. 10, 616–624.

    Article  PubMed  CAS  Google Scholar 

  17. Wymer, N. and Toone, E. J. (2000), Curr. Opin. Chem. Biol. 4, 110–119.

    Article  PubMed  CAS  Google Scholar 

  18. Flisch, S. L. (2000), Curr. Opin. Chem. Biol. 4, 619–625.

    Article  Google Scholar 

  19. Prade, H., Mackenzie, L. F., and Withers, S. G. (1998), Carbohydr. Res. 305, 371–381.

    Article  Google Scholar 

  20. Smaali, M. I., Gargouri, M., Limam, F., Fattouch, S., Maugard, T., Legoy, M. D., and Marzouki, N. (2003), Appl. Biochem. Biotechnol. 111, 23–40.

    Google Scholar 

  21. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  22. Laemmli, U. K. (1970), Nature 227, 680–685.

    Article  PubMed  CAS  ADS  Google Scholar 

  23. Blum, H., Beier, H., and Gross, B. (1987), Electrophoresis 8, 93–99.

    Article  CAS  Google Scholar 

  24. Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  25. Saha, B. C. and Bothast, R. J. (1996), Appl. Environ. Microbiol. 62, 3165–3170.

    PubMed  CAS  Google Scholar 

  26. Hrmovà M., Petrakova, E., and Biely, P. (1991), J. Gen. Microbiol. 137, 541–547.

    PubMed  Google Scholar 

  27. Watanabe, T., Sato, T., Yoshioka, S., and Kuwahara, M. (1992), Eur. J. Biochem. 209, 651–659.

    Article  PubMed  CAS  Google Scholar 

  28. Saha, B. C., Freer, S. N., and Bothast, R. J. (1994), Appl. Environ. Microbiol. 60, 3774–3780.

    PubMed  CAS  Google Scholar 

  29. Filho, E. X. F. (1996), Can. J. Microbiol. 42, 1–5.

    Article  Google Scholar 

  30. Ruttersmith, L. D. and Daniel, R. M. (1993), Biochim. Biophys. Acta 1156, 167–172.

    PubMed  CAS  Google Scholar 

  31. Woodward, J. and Wiseman, A. (1982), Enzyme Microb. Technol. 4, 73–79.

    Article  CAS  Google Scholar 

  32. Coughlan, M. P. (1985), Biotechnol. Genet. Eng. Rev. 3, 39–109.

    CAS  Google Scholar 

  33. Kengen, S. W. M., Leusink, E. J., Stams, A. J. M., and Zehnder, A. J. B. (1993), Eur. J. Biochem. 213, 305–312.

    Article  PubMed  CAS  Google Scholar 

  34. Yan, T. R. and Liau, J. C. (1998), Biotechnol. Lett. 20, 591–594.

    Article  CAS  Google Scholar 

  35. Kono, H., Waelchli, M. R., Fujiwara, M., Erata, T., and Takai, M. (1999), Carbohydr. Res. 319, 29–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzouki Nejib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issam, S.M., Mohamed, G., Dominique, L.M. et al. A β-glucosidase from Sclerotinia sclerotiorum . Appl Biochem Biotechnol 112, 63–77 (2004). https://doi.org/10.1385/ABAB:112:2:63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:112:2:63

Index Entries

Navigation