Skip to main content
Log in

Independent exponential feeding of glycerol and methanol for fed-batch culture of recombinant Hansenula polymorpha DL-1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As a novel feeding strategy for aptomizing human epidermal growth factor (hEGF) production with a recombinant Hansenula polymorpha DL-1 using the methanol oxidase (MOX) promoter in H. polymorpha DL-1, independent exponential feeding of two substrates was used. A simple kinetic model considering the cell growth on two substrates was established and used to calculate the respective feeding rates of glycerol and methanol. In the fedbatch culture with methanol-only feeding, the optimal set point of specific growth rate on methanol was found to be 0.10 h−1. When the fed-batch cultures were conducted by the independent feeding of glycerol and methanol, the actual specific growth rate on glycerol and methanol was slightly lower than the set point of specific growth rate. By the uncoupled feeding of glycerol and methanol the volumetric productivity of hEGF increased from 6.4 to 8.0 mg/(L·h), compared with methanol-only feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D 0 :

feed glucose concentration (g/L)

F G :

feeding rate of glycerol (L/h)

F M :

feeding rate of methanol (L/h)

G :

glycerol concentration (g/L)

G 0 :

feed glycerol concentration (g/L)

M :

methanol concentration (g/L)

M 0 :

feed methanol concentration (g/L)

P :

hEGF concentration (mg/L)

P max :

hEGF concentration at end of culture (mg/L)

q G :

specific glycerol consumption rate (g/[g·h])

q M :

specific methanol consumption rate (g/[g·h])

t :

time (h)

t f :

final culture time (h)

V :

culture volume (L)

V 0 :

culture volume at beginning of fed-batch phase (L)

X :

cell concentration (g/L)

X 0 :

cell concentration at beginning of fed-batch phase (g/L)

X max :

cell concentration at end of culture (g/L)

Y P/X :

product yield on cell mass (mg/g)

Y X/D :

cell yield on glucose (g/g)

Y X/G :

cell yield on glycerol (g/g)

Y X/M :

cell yield on methanol (g/g)

μ act :

actual specific growth rate (h−1)

μ G :

specific growth rate on glycerol (h−1)

μ Glu,sp :

set point of specific growth rate on glucose (h−1)

μ G,sp :

set point of specific growth rate on glycerol (h−1)

μ M :

specific growth rate on methanol (h−1)

μ M,sp :

set point of specific growth rate on methanol (h−1)

π:

specific production rate (mg/[g·h])

Π:

volumetric productivity (mg/[L·h])

References

  1. Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992), Yeast 8, 423–488.

    Article  CAS  Google Scholar 

  2. Gellissen, G., Hollenberg, C. P., and Janowicz, Z. A. (1994), in Gene Expression in Recombinant Microorganisms, Smith, A., ed., Marcel Dekker New York, pp. 195–239.

    Google Scholar 

  3. Faber, K. N., Harder, W., Greet, A. B., and Veenhuis, M. (1995), Yeast, 11, 1084–1088.

    Article  Google Scholar 

  4. Hollenberg, C. P. and Gellissen, G. (1997), Curr. Opin. Biotechnol. 6, 554–560.

    Article  Google Scholar 

  5. Gellissen, G. (2000), Appl. Microbiol. Biotechnol. 54, 741–750.

    Article  CAS  Google Scholar 

  6. Veale, R. A., Giuseppin, M. L. F., Vaneijk, H. M. J., Sudbery, P. E., and Verrips, C. T. (1992), Yeast 8, 361–372.

    Article  CAS  Google Scholar 

  7. Zurek, C., Kubis, E., Keup, P., Horlein, D., Beunink, J., Thommes, J., Kula, M. R., Hollenberg, C. P., and Gellissen, G. (1996), Proc. Biochem. 31, 679–689.

    Article  CAS  Google Scholar 

  8. Kim, C. H., Seo, H. W., Sohn, J. H., Choi, E. S., and Rhee, S. K. (1998), J. Ind. Microbiol. Biotechnol. 21, 1–5.

    Article  Google Scholar 

  9. Brierley, R. A., Siegel, R. S., Bussineau, C. M., et al. (1990), US patent WO 9003431.

  10. d'Anjou, M. C. and Daugulis, A. J. (2000), Biotechnol. Lett. 22, 341–346.

    Article  Google Scholar 

  11. d'Anjou, M. C. and Daugulis, A. J. (2001), Biotechnol. Bioeng. 72, 1–11.

    Article  Google Scholar 

  12. Files, D., Ogawa, M., Scaman, C. H., and Baldwin, S. A. (2001), Enzyme Microb. Technol. 29, 335–340.

    Article  CAS  Google Scholar 

  13. Hellwig, S., Emde, F., Raven, N. P., Henke, M., Logt, P. V. D., and Fischer, R. (2001), Biotechnol. Bioeng. 74, 344–352.

    Article  CAS  Google Scholar 

  14. Zhang, W., Bevins, M. A., Plantz, B. A., Smith, L. A., and Meagher, M. M. (2000), Biotechnol. Bioeng. 70, 1–8.

    Article  CAS  Google Scholar 

  15. Choi, E. S., Rhee, S. K. Sohn, J. H., Kang, H. A., and Bae, J. H. (1999), Korean patent pending, file no. 99-03095.

  16. Rhee, S. K. Choi, E. S., Kim, C. H., Sohn, J. H., Kang, H. A., and Kim, H. Y. (1999), US patent 5,935,789.

  17. Moon, H., Kim, H., rhee, S. K., Choi, E. S., Kang, H. A., Kim, I. H., and Hong, S. I. (2002), Proc. Biochem. 38, 487–495.

    Article  CAS  Google Scholar 

  18. Carpenter, G. and Cohen, S. (1979), Annu. Rev. Biochem. 48, 193–216.

    Article  CAS  Google Scholar 

  19. Coppella, S. T. and Dhurjati, P. (1989), Biotechnol. Bioeng. 33, 976–983.

    Article  CAS  Google Scholar 

  20. Ebisu, S., Takagi, H., Hodowaki, K., Yamagata, H., and Udaka, S. (1996), Ann. NY Acad. Sci. 782, 115–122.

    Article  CAS  Google Scholar 

  21. Hamsa, P. V., Kachroo, P., and Chattoo, B. B. (1998), Curr. Genet. 33, 231–237.

    Article  CAS  Google Scholar 

  22. Sivakesava, S., Xu, Z. N., Chen, Y. H., Hachett, J., Huang, R. C., Lam, E., and Lam, T. L. (1999), Proc. Biochem. 34, 893–900.

    Article  Google Scholar 

  23. Voller, A., Bidwell, D. E., and Bartlet, A. (1979), in A Guide with Abstracts of Microplate Application, Dynatech Laboratories, Inc., pp. 10–43.

  24. Modak, J. M., Lim, H. C., and Tayeb, Y. J. (1986), Biotechnol. Bioeng. 28, 1396–1407.

    Article  CAS  Google Scholar 

  25. Yee, L. and Blanch, H. W. (1992), Bio/Technology 10, 1550–1557.

    Article  CAS  Google Scholar 

  26. Egli, T., Bosshard, C., and Hamer, G. (1986), Biotechnol. Bioeng. 28, 1735–1741.

    Article  CAS  Google Scholar 

  27. Curvers, S. P., Brixius, T., Klauser, J., Thommes, D., Weuster-Botz, R., Takors, and Wandrey, C. (2001) Biotechnol. Prog. 17, 495–502.

    Article  CAS  Google Scholar 

  28. Yamane, T. and Shimizu, S. (1984), Adv. Biochem. Eng. 30 147–194.

    CAS  Google Scholar 

  29. Kang, H. A., Kang, W., Hong, W. K., Kim, M. W., Kim, J. Y., Sohn, J. H., Choi, E. S., Choe, K. B., and Rhee, S. K. (2001), Biotechnol. Bioeng. 76, 175–185.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, H., Kim, S.W., Lee, J. et al. Independent exponential feeding of glycerol and methanol for fed-batch culture of recombinant Hansenula polymorpha DL-1. Appl Biochem Biotechnol 111, 65–79 (2003). https://doi.org/10.1385/ABAB:111:2:65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:111:2:65

Index Entries

Navigation