Skip to main content
Log in

Olive husk

An alternative sorbent for removing heavy metals from aqueous streams

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sorption properties of olive husk were investigated under equilibrium (batch tests) and dynamic (column tests) conditions in order to assess the possibility of using such a waste material for removing heavy metals from aqueous streams. Husk samples were contacted, at 25°C, with aqueous solutions of nitric salts of Pb, Cd, Cu, and Zn. Sorption isotherms obtained from equilibrium data were fitted and interpreted by the Freundlich model. Metals-saturated husk samples resulting from column tests were air-dried and incinerated to simulate combustion in order to assess the fate of sorbed metals. The results demonstrated that, under both equilibrium and dynamic conditions, metal sorption capacity of the husk was in the sequence Pb>Cd>Cu>Zn. For all the metals, calculated Freundlich constants decreased by increasing initial metal concentration or decreasing solution pH. In dynamic tests, a significant reduction of sorption capacity was recorded (except for copper) when a metal was fed simultaneously to the others: Pb (77%); Cd (93%); Zn (68%). Combustion tests carried out on metals-saturated husk samples showed that the average losses of lead and cadmium, as volatile species, were always three to four times greater than the losses of copper and zinc, in both single-metal- and multimetal-saturated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, L. W., ed. (1996), Toxicology of Metals, CRC Press, Boca Raton, FL.

    Google Scholar 

  2. Edwards, J. D. (1995), Industrial Wastewater Treatment—A Guidebook, CRC Press, Boca Raton, FL.

    Google Scholar 

  3. Brooks, C. S. (1991), Metal Recovery from Industrial Waste, Lewis Publishers, Chelsea, MI.

    Google Scholar 

  4. McKay, G. ed. (1996), Use of Adsorbents for the Removal of Pollutants from Wastewater, CRC Press, Boca Raton, FL.

    Google Scholar 

  5. Bailey, S. E., Olin, T. J., Bricka, R. M., and Adrian, D. D. (1999), Water Res. 33, 2469–2479.

    Article  CAS  Google Scholar 

  6. Drake, L. R. and Rayson, G. D. (1996), Analyt. Chemistry 68(1), 22A-27A.

    CAS  Google Scholar 

  7. White, C., Wilkinson, S. C., and Gadd, G. M. (1995), Intern. Biodeter. Biodegrad. 35, 17–40.

    Article  CAS  Google Scholar 

  8. Volesky, B. (1990), Biosorption of Heavy Metals, CRC Press, Boca Raton, FL.

    Google Scholar 

  9. Yu, Q., Matheickal, J. T., Yin, P., and Kaewsarn, P. (1999), Water Res. 33, 1534–1537.

    Article  CAS  Google Scholar 

  10. Kapoor, A. and Viraraghavan, T. (1998), Water Res. 32, 1968–1977.

    Article  CAS  Google Scholar 

  11. Chang, J. S., Huang, J. C., Chang, C. C., and Tarn, T. J. (1998), Water Sci. Technol. 38, 171–178.

    Article  CAS  Google Scholar 

  12. Crist, R. H., Martin, J. R., Chonko, J., and Crist, D. R. (1996), Environ. Sci. Technol. 30, 2456–2461.

    Article  CAS  Google Scholar 

  13. Ho, Y. S. and McKay, G. (1999), Water Res. 33, 578–584.

    Article  CAS  Google Scholar 

  14. Ajmal, M., Khan, A. H., Ahmad, S., and Ahmad A. (1998), Water Res. 32, 3085–3091.

    Article  CAS  Google Scholar 

  15. Bryant, P. S., Petersen, J. N., Lee, J. M., and Brouns, T. M. (1992), Appl. Biochem. Biotechnol. 34/35, 777–788.

    Google Scholar 

  16. Alves, M. M., Beça, C. G. G., de Carvalho, R. G., Castanheira, J. M., Sol Pereira, M. C., and Vasconcelos, A. T. (1993), Water Res. 27, 1333–1338.

    Article  CAS  Google Scholar 

  17. Ravat, C., Dumonceau, J., and Monteil-Rivera, F. (2000), Water Res. 34, 1327–1339.

    Article  CAS  Google Scholar 

  18. Periasamy, K. and Namasivayam, C. (1995), Waste Manage. 15, 63–68.

    Article  CAS  Google Scholar 

  19. Filho, N. C., Winkler-Hechenleitner, A. A., and Gómez-Pineda, E. A. (1996), Int. J. Polymeric Mater. 34, 211–218.

    Google Scholar 

  20. Özer, A., Tümen, F., and Bildik, M. (1997), Environ. Technol. 18, 893–901.

    Google Scholar 

  21. Hawthorne Costa, E. T., Winkler-Hechenleitner, A. A., and Gómez-Pineda, E. A. (1995), Separat. Sci. Technol. 30, 2593–2602.

    Google Scholar 

  22. Marañón, E. and Sastre, H. (1992), Bioresour. Technol. 40, 73–76.

    Article  Google Scholar 

  23. Baes, A. U., Umali, S. J. P., and Mercado, R. L. (1996), Water Sci. Technol. 34, 193–200.

    Article  CAS  Google Scholar 

  24. Tan, W. T., Ooi, S. T., and Lee, C. K. (1993), Environ. Technol. 14, 277–282.

    CAS  Google Scholar 

  25. Orhan, Y. and Büyükgüngör, H. (1993), Water Sci. Technol. 28, 247–255.

    CAS  Google Scholar 

  26. Munaf, E. and Zein, R. (1997), Environ. Technol. 18, 359–362.

    Article  CAS  Google Scholar 

  27. Verma, N. and Rehal, R. (1994), Bioresour. Technol. 49, 277–278.

    Article  CAS  Google Scholar 

  28. Sharma, D. C. and Forster, C. F. (1994), Bioresour Technol. 47, 257–264.

    Article  CAS  Google Scholar 

  29. Macchi, G., Marani, D., and Tiravanti, G. (1986), Environ. Technol. Lett. 7, 431–444.

    Article  CAS  Google Scholar 

  30. Tee, T. W. and Khan, A. R. M. (1988), Environ. Technol. Lett. 9, 1223–1232.

    CAS  Google Scholar 

  31. Gharaibeh, S. H., Abu-El-Sha'r, W. Y., and Al-Kofahi, M. M. (1998), Water Res. 32, 498–502.

    Article  CAS  Google Scholar 

  32. American Society of Agronomy. (1996), in Methods of Soil Analysis. Part 3: Chemical Methods. Sparks, D. L., ed. Soil Science Society of America Inc., Madison, WI.

    Google Scholar 

  33. Weber, W. J. Jr., McGinley, P. M., and Katz, L. E. (1991), Water Res. 25, 499–528.

    Article  CAS  Google Scholar 

  34. Bolt, G. H. (1982), Soil Chemistry—B: Physico-Chemical Models, Elsevier, The Netherlands.

    Google Scholar 

  35. Schecher, W. D. and McAvoy, D. C. (1994), MINEQL+: A Chemical Equilibrium Program for Personal Computers, Version 3.0, Environmental Research Software, Hallowell, ME.

    Google Scholar 

  36. Lee, S. M. and Davis, A. P. (2001), Water Res. 35(2), 534–540.

    Article  PubMed  CAS  Google Scholar 

  37. Stumm, W. (1992), Chemistry of the Solid-Water Interface. Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, John Wiley & Sons, New York.

    Google Scholar 

  38. Zhao, D. and Sengupta, A. K. (1998), Water Res. 32, 1613–1625.

    Article  CAS  Google Scholar 

  39. Helfferich, F. (1962), Ion Exchange, McGraw Hill, New York.

    Google Scholar 

  40. Weast, R. C., ed. (1968), Handbook of Chemistry and Physics, 49th ed., Chemical Rubber Co., Cleveland, OH.

    Google Scholar 

  41. Habib, M. A. and Bockris, J. O'M. (1980), in Comprehensive Treatise of Electrochemistry—1. The Double Layer, Bockris, J. O'M., Conway, B. E., and Yeager, E., eds., Plenum, New York.

    Google Scholar 

  42. Sillen, L. G. (1971), Stability Constants of Metal-Ion Complexes, Chemical Society, London.

    Google Scholar 

  43. Gerstle, R. W. and Albrinck D. N. (1982), J. Air Pollu. Control Assoc. 32(11), 1119–1123.

    CAS  Google Scholar 

  44. Anderson, M. A. and Rubin, A. J. (1981), Adsorption of Inorganics at Solid-Liquid Interfaces, Ann Arbor Science Publishers, Ann Arbor, MI.

    Google Scholar 

  45. Blanchard, G., Maunaye, M., and Martin, G. (1984), Water Res. 18, 1501–1507.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Volpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpe, A., Lopez, A. & Pagano, M. Olive husk. Appl Biochem Biotechnol 110, 137–149 (2003). https://doi.org/10.1385/ABAB:110:3:137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:110:3:137

Index Entries

Navigation