Skip to main content
Log in

Improvement in enzyme activity and stability by addition of low molecular weight polyethylene glycol to sodium bis(2-ethyl-L-hexyl)sulfosuccinate/isooctane reverse micellar system

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The activity and stability of Chromobacterium viscosum lipase (glycerolester hydrolase, EC 3.1.1.3)-catalyzed olive oil hydrolysis in sodium bis (2-ethyl-1-hexyl)sulfosuccinate (AOT)/isooctane reverse micelles is increased appreciably when low molecular weight polyethylene glycol (PEG 400) is added to the reverse micelles. To understand the effect of PEG 400 on the phase behavior of the reverse micellar system, the phase diagram of AOT/PEG 400/water/isooctane system was studied. The influences of relevant parameters on the catalytic activity in AOT/PEG 400 reverse micelles were investigated and compared with the results in the simple AOT reverse micelles. In the presence of PEG 400, the linear decreasing trend of the lipase activity with AOT concentration, which is observed in the simple AOT reverse micelles, disappeared. Enzyme entrapped in AOT/PEG reverse micelles was very stable, retaining>75% of its initial activity after 60 d, whereas the half-life in simple AOT reverse micelles was 38 d. The kinetics parameter maximum velocity (V max)exhibiting the temperature dependence and the activation energy obtained by Arrhenius plot was suppressed significantly by the addition of PEG 400.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walde, P. and Luisi, P. L. (1989), Biochemistry 28, 3353–3360.

    Article  CAS  Google Scholar 

  2. Ayala, G. A., Kamat, S., Beckman, E. J., and Russell, A. J. (1992), Biotechnol. Bioeng. 39, 806–814.

    Article  CAS  Google Scholar 

  3. Han, D. and Rhee, J. S. (1986), Biotechnol. Bioeng. 28, 1250–1255.

    Article  CAS  Google Scholar 

  4. Walde, P., Han, D., and Luisi, P. L. (1993), Biochemistry 32, 4029–4034.

    Article  CAS  Google Scholar 

  5. Prazeres, D. M. F., Garcia, F. A. P., and Cabral, J. M. S. (1992), J. Chem. Technol. Biotechnol. 53, 159–164.

    CAS  Google Scholar 

  6. Hayes, D. G. and Gulari, E. (1990), Biotechnol. Bioeng. 35, 793–801.

    Article  CAS  Google Scholar 

  7. Mahiran, B., Kamaruzaman, A., Wan, M. D., Zin, W. Y., Razak, C. N. A., and Salleh, A. B. (1995), J. Chem. Technol. Biotechnol. 64, 10–16.

    Article  Google Scholar 

  8. Kelly, B. D., Wang, D. I. C., and Hatton, T. A. (1993), Biotechnol. Bioeng. 42, 1209–1217.

    Article  Google Scholar 

  9. Yamada, Y., Kuboi, R., and Komazawa, S. (1993), Biotechnol. Prog. 9, 468–472.

    Article  CAS  Google Scholar 

  10. Hossain, M. J., Takeyama, T., Hayashi, Y., Kawanishi, T., Shimizu, N., and Nakamura, R. (1999), J. Chem. Technol. Biotechnol. 74, 423–428.

    Article  CAS  Google Scholar 

  11. Iskander, L. Y., Ono, T., Kamiya, N., Goto, M., Nakashio, F., and Furusaki, S. (1998), Biochem. Eng. J. 2, 29–33.

    Article  Google Scholar 

  12. Wu, J. C., He, Z. M., Yao, C. Y., and Yu, K. T. (2001), J. Chem. Technol. Biotechnol. 76, 949–953.

    Article  CAS  Google Scholar 

  13. Sakodinskaya, I. K., Sorokina, E. M., Efremova, N. V., and Topchieva, I. N. (1998), Biotechnol. Techniques 12, 607–610.

    CAS  Google Scholar 

  14. Casa, R. M., Sanchez-Montero, J. M., and Sinisterra, J. V. (1999), Biotechnol. Lett. 21, 123–128.

    Article  Google Scholar 

  15. Hayashi, Y., Talukder, M. M. R., Wu, J., Takeyama, T., Kawanishi, T., and Shimizu, N. (2001), J. Chem. Technol. Biotechnol. 76, 844–850.

    Article  CAS  Google Scholar 

  16. Meier, W. (1996), Langmuir 12, 1188–1192.

    Article  CAS  Google Scholar 

  17. Harris, J. M. (1992), in Poly(ethylene glycol) Chemistry, Harris, J. M. ed., Plenum, New York, pp. 5, 6.

    Google Scholar 

  18. Suarez, M. J. and Lang, J. (1995), J. Phys. Chem. 99, 4626–4631.

    Article  CAS  Google Scholar 

  19. Taipa, M. A., Liebeton, K., Costa, J. V., Cabral, J. M. S., and Jaegar, K. E. (1995), Biochim. Biophys. Acta 1256, 396–402.

    Google Scholar 

  20. Hossain, M. J., Hayashi, Y., Shimizu, N., and Kawanishi, T. (1996), J. Chem. Technol. Biotechnol. 67, 190–194.

    Article  CAS  Google Scholar 

  21. Lowry, R. R. and Tinsley, I. J. (1979), J. Am. Oil Chem. Soc. 53, 470–472.

    Google Scholar 

  22. Hayes, D. G. and Gulari, E. (1991), Biotechnol. Bioeng. 38, 507–517.

    Article  CAS  Google Scholar 

  23. Pereira, R. D. R., Zanette, D., and Nome, F. (1990), J. Phys. Chem. 94, 356–361.

    Article  CAS  Google Scholar 

  24. Antonsen, K. P. and Hoffman, A. S. (1992), in Poly(ethylene glycol) Chemistry, Harris, J. M., ed. Plenum, New York, pp. 15–27.

    Google Scholar 

  25. Leung, R. and Shah, D. (1987), J. Coll. Interface Sci. 120, 330–344.

    Article  Google Scholar 

  26. Lang, J., Jada, A., and Malliaris, A. (1988), J. Phys. Chem. 92, 1946–1953.

    Article  CAS  Google Scholar 

  27. Han, D. H., Walde, P., and Luisi, P. L. (1990), Biocatalysis 4, 153–161.

    Google Scholar 

  28. Martinek, K., Klyachko, N. L., Kabanov, A. V., Khmelnitski, Y. L., and Levashov, A. V. (1989), Biochem. Biophys. Acta 981, 161–172.

    Article  CAS  Google Scholar 

  29. Christopher, D. J., Yarwood, J., Belton, P. S., and Hills, B. P. (1992), J. Coll. Interface Sci. 152, 465–472.

    Article  CAS  Google Scholar 

  30. Barbaric, S. and Luisi, P. L. (1981), J. Am. Chem. Soc. 103, 4239–4244.

    Article  CAS  Google Scholar 

  31. Wong, M., Thomas, J. K., and Nowak, T. (1977), J. Am. Chem. Soc. 99, 4730–4736.

    Article  CAS  Google Scholar 

  32. Gaertner, H. F. and Puigserver, A. J. (1992), Enzyme Microbiol. Technol. 14, 150–155.

    Article  CAS  Google Scholar 

  33. Longo, M. A. and Combes, D. (1999), J. Chem. Technol. Biotechnol. 74, 25–32.

    Article  CAS  Google Scholar 

  34. Lamb, S. B. and Stuckey, D. C. (2000), Enzyme Microb. Technol. 26, 574–581.

    Article  CAS  Google Scholar 

  35. Chang, P. S. and Rhee, J. S. (1990), Biocatalysis 3, 343–355.

    CAS  Google Scholar 

  36. Brue, R., Sanchez-Ferrer, A., and Garcia-Carmona, F. (1990), Biochem. J. 268, 679–684.

    Google Scholar 

  37. Verhaert, R. M. D., Hilhorst, R., Vermue, M., Schaafsma, T., and Veeger, C. (1990), Eur. J. Biochem. 187, 59–72.

    Article  CAS  Google Scholar 

  38. Nagarajan, R. (1993), Langmuir, 9, 369–375.

    Article  CAS  Google Scholar 

  39. Suarez, M. J., Levy, H., and Lang, J. (1993), J. Phys. Chem. 97, 9808–9816.

    Article  CAS  Google Scholar 

  40. Papoutsi, D., Lianos, P., and Brown, W. (1994), Langmuir 10, 3402–3405.

    Article  CAS  Google Scholar 

  41. Shiomori, K., Ishimura, M., Baba, Y., Kawano, Y., Kuboi, R., and Komasawa, I. (1996), J. Ferment. Bioeng. 81, 143–147.

    Article  CAS  Google Scholar 

  42. Rees, G. D., Robinson, B. H., and Stephenson, G. R. (1995), Biochim. Biophys. Acta 1257, 239–248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talukder, M.M.R., Takeyama, T., Hayashi, Y. et al. Improvement in enzyme activity and stability by addition of low molecular weight polyethylene glycol to sodium bis(2-ethyl-L-hexyl)sulfosuccinate/isooctane reverse micellar system. Appl Biochem Biotechnol 110, 101–112 (2003). https://doi.org/10.1385/ABAB:110:2:101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:110:2:101

Index Entries

Navigation