Skip to main content
Log in

Dynamic simulation of pH in anaerobic processes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

With the objective of contributing to the buildup of mathematical tools for anaerobic process simulation, an algorithm for the dynamic simulation of pH was developed. The dynamic simulation of the gaseous phase variables was also considered. The pH algorithm was validated for a watery system, obtaining good agreement between predicted and experimental data. The applied methodology provides a differential equation that allows the inclusion of pH as a state variable of the system that can be easily included in a general mathematical model of anaerobic digestion using matrix notation. This methodology also allows a noticeable decrease in computing time in simulations. A dynamic anaerobic digestion model of complex substrates taken from the literature was completed with the developed algorithms, and it was used to predict the response of an anaerobic reactor against overloading and against the presence of pH-dependent inhibitors with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalyuzhnyi, S. and Federovich, V. (1997), Water Sci. Technol. 36(6–7), 201–208.

    Article  CAS  Google Scholar 

  2. Batstone, D. J., Keller, J., Angelidaki, R. I., Kalyuzhny, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W. T. M., Siegrist, H., and Vavilin, V.-A. (2002), Scientific and Technical Report No. 13, International Water Association, London.

    Google Scholar 

  3. Clark, R. H. and Speece, R. E. (1970), in Advances in Water Pollution Research, Proceedings of the 5th International Conference, vol. II(27), Jenkins, S. H., ed., Pergamon, Oxford, pp. 1–14.

    Google Scholar 

  4. Zeeman, G., Wiegant, W. M., Koster-Treffers, M. E., and Lettinga, G. (1985), Agric. Wastes 14, 19–35.

    Article  CAS  Google Scholar 

  5. Hashimoto, A. G. (1986), Agric. Wastes 17, 241–261.

    Article  CAS  Google Scholar 

  6. Angelidaki, I. and Ahring, B. K. (1993), Appl. Microbiol. Biotechnol. 38, 560–564.

    Article  CAS  Google Scholar 

  7. Hansen, K., Angelidaki, I., and Ahring, B. K. (1998), Water Res. 32, 5–12.

    Article  CAS  Google Scholar 

  8. Ahring, B. K. and Westermann, P. (1988), Appl. Environ. Microbiol. 54, 2393–2397.

    CAS  Google Scholar 

  9. Fukuzaki, S., Nishio, N., Shobayashi, M., and Nagai, S. (1990), Appl. Environ. Microbiol. 56, 719–723.

    CAS  Google Scholar 

  10. Andrews, J. F. and Graef, S. P. (1971), in Anaerobic Biological Treatment Processes, Advances in Chemistry Series 105, Pohland, F. G., ed., American Chemical Society, Washington, DC, pp. 126–162.

    Google Scholar 

  11. Costello, D. J., Greenfield, P. F., and Lee, P. L. (1991), Water Res. 25, 847–858.

    Article  CAS  Google Scholar 

  12. Siegrist, H., Renggli., D., and Gujer, W. (1993), Water Sci. Technol. 27(2), 25–36.

    CAS  Google Scholar 

  13. Angelidaki, I., Ellegaard, L., and Ahring, B. K. (1993), Biotechnol. Bioeng. 42, 159–166.

    Article  CAS  Google Scholar 

  14. Vavilin, V. A., Vasiliev, V., Rytov, S., and Ponomarev, A. (1995), Water Res. 29, 827–835.

    Article  CAS  Google Scholar 

  15. Kiely, G., Tayfur, G., Dolan, C., and Tanji, K. (1997), Water Res. 31, 534–540.

    Article  CAS  Google Scholar 

  16. Lide, D. (1993), CRC Handbook of Chemistry and Physics, 73rd ed., CRC Press, Boca Raton, FL.

    Google Scholar 

  17. Aguilar Sanjuán, M. (1993), Introduccion a los equilibrios iónicos, Cpda-etseib, Barcelona.

    Google Scholar 

  18. Merkel, W. and Krauth, K. (1999), Water Res. 33, 2011–2020.

    Article  CAS  Google Scholar 

  19. Costello, D. J., Greenfield, P. F., and Lee, P. L. (1991), Water Res. 25, 859–871.

    Article  CAS  Google Scholar 

  20. Van Langerak, E. P. A., Hamelers, H. V. M., and Lettinga, G. (1997), Water Sci. Technol. 36(6–7), 341–348.

    Article  Google Scholar 

  21. Musvoto, E. V., Wentzel, M. C., Loewenthal, R. E., and Ekama, G. A. (2000), Water Res. 34, 1857–1867.

    Article  CAS  Google Scholar 

  22. Sewell, G. (1988), The Numerical Solution of Ordinary and Partial Differential Equations, Academic, London.

    Google Scholar 

  23. Angelidaki, I., Ellegaard, L., and Ahring, B. K. (1999), Biotechnol. Bioeng. 63, 363–372.

    Article  CAS  Google Scholar 

  24. Angelidaki, I., Ellegaard, L., and Ahring, B. K. (1997), Water Sci. Technol. 36(6–7), 263–269.

    Article  CAS  Google Scholar 

  25. Hanaki, K., Matsuo, T., and Nagase, M. (1981), Biotechnol. Bioeng. 23, 1591–1610.

    Article  CAS  Google Scholar 

  26. Angelidaki, I., and Ahring, B. K. (1992), Appl. Microbiol. Biotechnol. 37, 808–812.

    Article  CAS  Google Scholar 

  27. Campos, E. (2001), PhD thesis, University of Lleida, Lleida, Spain.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Flotats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, E., Flotats, X. Dynamic simulation of pH in anaerobic processes. Appl Biochem Biotechnol 109, 63–76 (2003). https://doi.org/10.1385/ABAB:109:1-3:63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:109:1-3:63

Index Entries

Navigation