Skip to main content
Log in

Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Different mixtures of animal byproducts, other slaughterhouse waste (i.e., rumen, stomach and intestinal content), food waste, and liquid manure were codigested at mesophilic conditions (37°C) at laboratory and pilot scale. Animal byproducts, including blood, represent 70–80% of the total biogas potential from waste generated during slaughter of animals. The total biogas potential from waste generated during slaughter is about 1300 MJ/cattle and about 140 MI/pig. Fed-batch digestion of pasteurized (70°C, 1h) animal byproducts resulted in a fourfold increase in biogas yield (1.14L/g of volatile solids [VS]) compared with nonpasteurized animal bypproducts (0.31L/g of VS). Mixtures with animal byproducts representing 19–38% of the total dry matter were digested in continuous-flow stirred tank reactors at laboratory and pilot scale. Stable processes at organic loading rates (OLRs) exceeding 2.5g of VS/(L·d) and hydraulic retention times (HRTs) less than 40 d could be obtained with total ammonia nitrogen concentrations (NH4−N+NH3−N) in the range of 4.0–5.0 g/L. After operating one process for more than 1.5 yr at total ammonia nitrogen concentrations >4 g/L, an increase in OLR to 5 g of VS/(L·d) and a decrease in HRT to 22 d was possible without accumulation of volatile fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mathisen, B. (1997), in Proceedings of the 5th FAO/SREN Workshop, Verstrate, W., ed., REUR Technical Series 52, Rome, pp. 257–261.

  2. Hjort-Gregersen, K. (1999) Report, Centralised Biogas Plant—Integrated Energy Production, Waste Treatment and Nutrient Redistribution Facilities, Danish Institute of Agricultural and Fisheries Economics, Esbjerg, Denmark.

    Google Scholar 

  3. Council Directive 90/667/EEC, Official Journal of the European Communities, Brussel, Belgium.

  4. Danell, L. (1979), Report, Biproduktsmätningar storboskap 1977–78, Rapport från avräkningskommittén, Slakteriförbundet.

  5. Thyselius, L. and Edström, M. (1994), in Proceedings of the 4th FAO/SREN Workshop, Marchaim, U. and Ney, G., eds., REUR Technical Series 33, Rome, pp. 254–261.

  6. Wikberg, A., Blomberg, M., and Mathisen, B. (1998), AFR-report 234, Naturvårdsverket, Stockholm.

    Google Scholar 

  7. Oeschner, H. and Gosch, A. (1998), in Kofermentation, Arbeitspapier 249, Biskupek, B., ed. KTBL, Darmstadt, pp. 17–28.

    Google Scholar 

  8. Braun, R. and Kirchmayr, R. (2000), in Proceedings of Biogas Event 2000, Nordberg, A., ed., Swedish National Energy Administration, Eskilstuna, Sweden, pp. 14.1–14.7.

    Google Scholar 

  9. Lindberg, A. (1995) JTI Report Kretslopp & Avfall no. 1. Institutet för jordbruksmiljöteknik, Uppsala, Sweden.

    Google Scholar 

  10. Tritt, W. P. and Schuchardt, F. (1992), Bioresour. Technol. 41, 235–245.

    Article  CAS  Google Scholar 

  11. Örlygsson, J., Houwen, F. P., and Svensson, H. B. (1993), Swed. J. Agric. Res. 24, 45–54.

    Google Scholar 

  12. Jarvis, Å., Nordberg, Å., Mathisen, B., and Svensson, B. H. (1995), Antonie Leeuwenhoek 68, 317–327.

    Article  CAS  Google Scholar 

  13. APHA. (1985). Standard Methods for the Examination of Water and Wastewater, 16th ed., American Public Health Association, Washington, DC.

    Google Scholar 

  14. Kirchmayr, R., Steffen, R., Grasmug, M., et al. (2001), in Proceedings of the 9th World Congress Anaerobic Digestion 2001-Anaerobic Conversion for Sustainability, part 1, van Velsen, A. F. M. and Verstraete, W. H., ed., Technologisch Instituut vzw, Antwerpen, Belgium, pp. 469–472.

    Google Scholar 

  15. van Velsen, A.F.M. (1979), Water Res. 13, 995–999.

    Article  Google Scholar 

  16. Angeledaki, I. and Ahring, B. K. (1993), Appl. Microbiol. Biotechnol. 38, 560–563.

    Google Scholar 

  17. Koster, I. W. and Lettinga, G. (1984), Agric. Wastes 9, 205–216.

    Article  CAS  Google Scholar 

  18. Braun, R., Huber, P., and Meyrath, J. (1981), Biotechnol. Lett. 3, 159–164.

    Article  CAS  Google Scholar 

  19. Angeledaki, I. and Ahring, B. K. (1994), Water Res. 28(3), 727–731.

    Article  Google Scholar 

  20. Wellinger, A. (2000), in Anaerobic Digestion: Making Energy and Solving Modern Waste Problems, Ørtenblad, H., ed., AD-NETT, Herning, Denmark, pp. 8–21.

    Google Scholar 

  21. Wikberg, A. (1996), Licentiate of Engineering Thesis at the Royal Institute of Technology, Department of Chemical Engineering and Technology, TRITA-KET R 57, Stockholm, Sweden.

  22. Angeledaki, I. and Ahring, B. K. (1992), Appl. Microbiol. Biotechnol. 37, 808–812.

    Google Scholar 

  23. Salminen, E., Rintala, J., Lokshina, L. Y., and Vavilin, V. A. (2000), Water Sci. Technol. 41(3), 33–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Edström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edström, M., Nordberg, Å. & Thyselius, L. Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale. Appl Biochem Biotechnol 109, 127–138 (2003). https://doi.org/10.1385/ABAB:109:1-3:127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:109:1-3:127

Index Entries

Navigation