Advertisement

Applied Biochemistry and Biotechnology

, Volume 108, Issue 1–3, pp 737–748 | Cite as

Xylanase production by Penicillium canescens 10–10c in solid-state fermentation

Article

Abstract

Filamentous fungi have been widely used to produce hydrolytic enzymes for industrial applications, including xylanases, whose levels in fungi are generally much higher than those in yeast and bacteria. We evaluated the influence of carbon sources, nitrogen sources, and moisture content on xylanase production by Penicillium canescens 10–10c in solid-state fermentation. Among agricultural wastes tested (wheat bran, untreated wheat straw, treated wheat straw, beet pulp, and soja meal), untreated wheat straw gave the highest production of xylanase. Optimal initial moisture content for xylanase production was 83%. The addition of 0.4 g of xylan or easily metabolizable sugar, such as glucose and xylose, at a concentration of 2% to wheat straw enhanced xylanase production. In solid-state fermentation, even at high concentrations of glucose or xylose (10%), catabolic repression was minimized compared to the effect observed in liquid culture. Yeast extract was the best nitrogen source among the nitrogen sources investigated: peptone, ammonium nitrate, sodium nitrate, ammonium chloride, and ammonium sulfate. A combination of yeast extract and peptone as nitrogen sources led to the best xylanase production.

Index Entries

Penicillium canescens xylanase solid-state fermentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poutanen, K., Rättö, M., Puls, J., and Viikari, L. (1987), J. Biotechnol. 6, 49–60.CrossRefGoogle Scholar
  2. 2.
    Buchert, J., Tenkanen, M., Kantelinen, A., and Viikari, L. (1994), Bioresour. Technol. 50, 65–72.CrossRefGoogle Scholar
  3. 3.
    Wong, K. K. L., James, C. S., and Campion, S. H. (2000), J. Pulp Paper Sci. 26, 377–383.Google Scholar
  4. 4.
    Si, J. Q. (1995), Patent Cooperation Treaty (PCT), International patent application no. WO 95/23515 A1.Google Scholar
  5. 5.
    Medel, P., Baucells, F., Gracia, M. I., Blas, C., and Mateos, G. G. (2002), Anim. Feed Sci. Technol. 95, 113–122.CrossRefGoogle Scholar
  6. 6.
    Gilbert, H. J. and Hazlewood, G. P. (1993), J. Gen. Microbiol. 139, 187–194.Google Scholar
  7. 7.
    Gokhale, D. V., Patil, S. G., and Bastawde, K. B. (1998), Bioresour. Technol. 63, 187–191.CrossRefGoogle Scholar
  8. 8.
    Coughlan, M. P. and Hazlewood, G. P. (1993), Biotechnol. Appl. Biochem. 17, 259–289.PubMedGoogle Scholar
  9. 9.
    Abdel-Sater, M. A. and El-Said, A. H. M. (2001), Intern. Biodeterior. Biodegrad. 47, 15–21.CrossRefGoogle Scholar
  10. 10.
    Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., and Župančič, S. (1996), Bioresour. Technol. 58, 137–161.CrossRefGoogle Scholar
  11. 11.
    Sachslehner, A., Haltrich, D., Nidetzky, B., and Kulbe, K. D. (1997), Appl. Biochem. Biotechnol. 63–65, 189–201.CrossRefGoogle Scholar
  12. 12.
    Kvesitadze, E., Adeishvili, E., Gomarteli, M., Kvachadze, L., and Kvesitadze, G. (1999), Intern. Biodeterior. Biodegrad. 43, 189–196.CrossRefGoogle Scholar
  13. 13.
    Jain, A. (1995), Process Biochem. 30, 705–709.CrossRefGoogle Scholar
  14. 14.
    Lemos, J. L. S., Fontes, M. C. A., and Pereira, N. J. (2001), Appl. Biochem. Biotechnol. 91–93, 681–689.PubMedCrossRefGoogle Scholar
  15. 15.
    Pandey, A., Soccol, C. R., Nigam, P., and Soccol, V. T. (2000), Bioresour. Technol. 74, 69–80.CrossRefGoogle Scholar
  16. 16.
    Cannel, E. and Moo-Young, M. (1980), Process Biochem. 15, 2–7.Google Scholar
  17. 17.
    Durand, A. (1998), Biofutur 181, 41–43.CrossRefGoogle Scholar
  18. 18.
    Weiland, P. (1986), in Treatment of Lignocellulosics with White Rot Fungi, Zadrazil, F. and Reiniger, P., eds., Elsevier Applied Science, London, England, UK, pp. 64–76.Google Scholar
  19. 19.
    Ferreira, G., Boer, C. G., and Peralta, R. M. (1999), FEMS Microbiol. Lett. 173, 335–339.CrossRefGoogle Scholar
  20. 20.
    Bailey, M. J., Biely, P., and Poutanen, K. (1992), J. Biotechnol. 23, 257–270.CrossRefGoogle Scholar
  21. 21.
    Miller, G. L. (1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  22. 22.
    Haltrich, D. and Steiner, W. (1994), Enzyme Microb. Technol. 16, 229–235.CrossRefGoogle Scholar
  23. 23.
    Ghanem, N. B., Yusef, H. H., and Mahrouse, H. K. (2000), Bioresour. Technol. 73, 113–121.CrossRefGoogle Scholar
  24. 24.
    Kalogeris, E., Christakopoulos, P., Kekos, D., and Macris, B. J. (1998), J. Biotechnol. 60, 155–163.CrossRefGoogle Scholar
  25. 25.
    Biswas, S. R., Mishra, A. K., and Nanda, G. (1988), Biotechnol. Bioeng. 31, 613–616.CrossRefGoogle Scholar
  26. 26.
    Dubeau, H., Chahal, D. S., and Ishaque, M. (1986), Biotechnol. Lett. 8, 445–448.CrossRefGoogle Scholar
  27. 27.
    Xia, L. and Cen, P. (1999), Process Biochem. 34, 909–912.CrossRefGoogle Scholar
  28. 28.
    Archana, A. and Satyanarayana, T. (1997), Enzyme Microb. Technol. 21, 12–17.CrossRefGoogle Scholar
  29. 29.
    Gawande, P. V. and Kamat, M. Y. (1999), J. Appl. Microbiol. 87, 511–519.PubMedCrossRefGoogle Scholar
  30. 30.
    Abdulah, A. L., Tengerdy, R. P., and Murphy, V. G. (1985), Biotechnol. Bioeng. 27, 20–27.CrossRefGoogle Scholar
  31. 31.
    Dechamps, F., Giuliano, C., Asther, M., Huet, M. C., and Roussos, S. (1985), Biotechnol. Bioeng. 27, 1385–1388.CrossRefGoogle Scholar
  32. 32.
    Gaspar, A., Cosson, T., Roques, C., and Thonart, P. (1997), Appl. Biochem. Biotechnol. 67, 45–58.PubMedCrossRefGoogle Scholar
  33. 33.
    Kadowaki, M. K., Souza, C. G. M., Simão, R. C., and Peralta, R. M. (1997), Appl. Biochem. Biotechnol. 66, 97–106.Google Scholar
  34. 34.
    Souza, D. F., Souza, C. G. M., and Peralta, R. M. (2001), Process Biochem. 36, 835–838.CrossRefGoogle Scholar
  35. 35.
    Maldonado, M. C. and Strasser de Saad, A. M. (1998), J. Ind. Microbiol. Biotechnol. 20, 34–38.PubMedCrossRefGoogle Scholar
  36. 36.
    Bansod, F. M., Dutta-Choudhary, M., Srivasan, M. C., and Rele, M. V. (1993), Biotechnol. Lett. 15, 965–970.CrossRefGoogle Scholar
  37. 37.
    Steiner, W., Lafferty, R. M., Gomes, I., and Esterbauer, H. (1987), Biotechnol. Bioeng. 30, 169–178.CrossRefGoogle Scholar
  38. 38.
    Grajek, W. (1987), Biotechnol. Lett. 9, 353–356.CrossRefGoogle Scholar
  39. 39.
    Biswas, S. R., Jana, S. C., Mishra, A. K., and Nada, G. (1990), Biotechnol. Bioeng. 35, 244–251.CrossRefGoogle Scholar
  40. 40.
    Couri, S., Terzi, S. C., Pinto, G. S., Freitas, S. P., and Costa, A. C. A. (2000), Process Biochem. 36, 255–261.CrossRefGoogle Scholar
  41. 41.
    Considine, P. J., Buckley, R. J., Griffin, T. O., Tuohy, M. G., and Coughlan, M. P. (1989), Biotechnol. Techniques 3, 85–90.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Yasser Bakri
    • 1
  • Philippe Jacques
    • 1
  • Philippe Thonart
    • 1
  1. 1.Centre Wallon de Biologie IndustrielleFaculté Universitaire des Sciences AgronomiquesGemblouxBelgium

Personalised recommendations