Skip to main content
Log in

Automated filter paper assay for determination of cellulase activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recent developments in molecular breeding and directed evolution have promised great developments in industrial enzymes as demonstrated by exponential improvements in β-lactamase and green fluorescent protein (GFP). Detection of and screening for improved enzymes are relatively easy if the target enzyme is expressible in a suitable high-throughput screening host and a clearly defined and usable screen or selection is available, as with GFP and β-lactamase. Fungal cellulases, however, are difficult to measure and have limited expressibility in heterologous hosts. Furthermore, traditional cellulase assays are tedious and time-consuming. Multiple enzyme components, an insoluble substrate, and generally slow reaction rates have plagued cellulase researchers interested in creating cellulase mixtures with increased activities and/or enhanced biochemical properties. Although the International Union of Pure and Applied Chemists standard measure of cellulase activity, the filter paper assay (FPA), can be reproduced in most laboratories with some effort, this method has long been recognized for its complexity and susceptibility to operator error. Our current automated FPA method is based on a Cyberlabs C400 robotics deck equipped with customized incubation, reagent storage, and plate-reading capabilities that allow rapid evaluation of cellulases acting on cellulose and has a maximum throughput of 84 enzyme samples per day when performing the automated FPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyman, C. E., Bain, R. L., Hinman, N. D. and Stevens, D. J. (1993), in Renewable Energy: Sources for Fuels and Electricity, Johansson, T. B., Kelly, H., Reddy, A. K. N., and Williams, R. H., eds., Island Press, Washington, DC, pp. 865–924.

    Google Scholar 

  2. Sheehan, J. J. (1994), in Enzymatic Conversion of Biomass for Fuels Production, vol. 566, Himmel, M. E., Baker, J. O. and Overend, R. P., eds., American Chemical Society, Washington, DC, pp. 1–52.

    Google Scholar 

  3. Bergeron, P. (1996), in Handbook on Bioethanol., Wyman, C. E., ed., Taylor & Francis, Washington, DC, pp. 89–103.

    Google Scholar 

  4. Himmel, M. E., Ruth, M. F., and Wyman, C. E. (1999), Curr. Opin. Biotechnol. 10, 358–364.

    Article  CAS  Google Scholar 

  5. Sheehan, J.S. and Himmel, M.E. (2001), AGRO-food-INDUSTRY HI-TECH 12(5), TeknoScienze, Milano, Italy, 54–57.

    Google Scholar 

  6. Hsu, T.-A. (1996), in Handbook on Bioethanol., Wyman, C. E., ed., Taylor & Francis, Washington, DC, pp 179–212.

    Google Scholar 

  7. Himmel, M. E., Adney, W. S., Baker, J. O., Elander, R., McMillan, J. D., Nieves, R. A., Sheehan, J. J., Thomas, S. R., Vinzant, T. B., and Zhang, M. (1997), in Fuels and Chemicals From Biomass, vol. 666, Saha, B., Woodward, J., eds., American Chemical Society, Washington, DC, pp. 2–45.

    Google Scholar 

  8. Himmel, M. E., Adney, W. S., Baker, J. O., Nieves, R. A. and Thomas, S. R. (1996), in Handbook on Bioethanol., Wyman, C. E., ed., Taylor & Francis, Washington, DC, pp. 143–161.

    Google Scholar 

  9. Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. (1996), Nat. Biotechnol. 14, 315–319.

    Article  CAS  Google Scholar 

  10. Zaccolo, M. and Gherardi, E. (1999), J. Mol. Biol. 285, 775–783.

    Article  CAS  Google Scholar 

  11. Ghose, T. (1984), Measurement of Cellulase Activity, Commission on Biotechnology, International Union of Pure and Applied Chemistry, New Delhi, India.

    Google Scholar 

  12. Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.

    CAS  Google Scholar 

  13. Mandels, M., Miller, G. L., and Slater, R. W. (1961), Arch. Biochem. Biophys. 93, 115–121.

    Article  CAS  Google Scholar 

  14. Nieves, R. A., Ehrman, C. I., Adney, W. S., Thomas, S. R., and Himmel, M. E. (1998), World J. Microbiol. Biotechnol. 14, 301–304.

    Article  CAS  Google Scholar 

  15. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  16. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotech. Bioeng. Symp. 6, 21–33.

    CAS  Google Scholar 

  17. Wood, T. M. and McCrae, S. I. (1977), Carbohydr. Res. 57, 117–133.

    Article  CAS  Google Scholar 

  18. Ghose, T. K., Pathak, A. N., and Bisaria, V. S. (1975), in Proceedings of the Symposium on Enzymatic Hydrolysis of Cellulose, Bailey, M., Enari, T.-M., and Linko, M., eds., The Finnish National Fund for Research and Development (SITRA), Helsinki, Finland, pp. 111–136.

    Google Scholar 

  19. Shoemaker, S. P. and Brown, R. D., Jr. (1978), Biochim. Biophys. Acta 523, 147–161.

    CAS  Google Scholar 

  20. Sheir-Neiss, G. and Montenecourt, B. S. (1984), Appl. Microbiol. Biotechnol. 20, 46–53.

    Article  CAS  Google Scholar 

  21. Johnson, E. A., Sakajoh, M., Halliwell, G., Madia, A., and Demain, A. L. (1982), Appl. Environ. Microbiol. 43, 1125–1132.

    CAS  Google Scholar 

  22. Johnson, D. B., Shoemaker, S. P., Smith, G. M., and Whitaker, J. R. (1998), J. Food Biotechnol. 22, 301–319.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Decker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decker, S.R., Adney, W.S., Jennings, E. et al. Automated filter paper assay for determination of cellulase activity. Appl Biochem Biotechnol 107, 689–703 (2003). https://doi.org/10.1385/ABAB:107:1-3:689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:107:1-3:689

Index Entries

Navigation