Skip to main content
Log in

Simulation of aerated lagoon using artificial neural networks and multivariate regression techniques

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to develop an empirical model that provides accurate predictions of the biochemical oxygen demand of the output stream from the aerated lagoon at International Paper of Brazil, one of the major pulp and paper plants in Brazil. Predictive models were calculated from functional link neural networks (FLNNs), multiple linear regression, principal components regression, and partial least-squares regression (PLSR). Improvement in FLNN modeling capability was observed when the data were preprocessed using the PLSR technique. PLSR also proved to be a powerful linear regression technique for this problem, which presents operational data limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BOD:

outlet wastewater BOD (mg/L)

COD:

inlet wastewater COD (mg/L)

COLOR:

color (ppm or mg/L)

COND:

conductivity (µS/cm at 20°C)

f :

transfer function proposed by Henrique (28)

FLOW:

inlet flow rate (m3/d)

h :

polynomial expansion

N :

number of monomials

N.AM.:

inlet ammonia concentration (mg/L)

N.N.:

inlet nitrate concentration (mg/L)

PAPER:

paper production (t/d)

PULP:

pulp production (t/d)

RAIN:

rainfall (mL/d)

S.S.:

inlet suspended solids (mg/L)

T.:

temperature (°C)

x :

input matrix

y :

predicted output

w ij :

neural network weights of i input and j monomial

References

  1. Hamoda, M. F., Al-Ghusain, I. A., and Hassan, A. H. (1999), Water Sci. Technol. 40, 55–65.

    Article  Google Scholar 

  2. Harremoës, P., Capodaglio, A. G., Hellstrom, B. G., Henze, M., Jensen, K. N., Lynggaaard-Jensen, A., Otterpohl, R., and Soeborg, H. (1993), Water Sci. Technol. 27, 71–115.

    Google Scholar 

  3. Lee, D. S. and Park, J. M. (1999), J. Biotechnol. 75, 229–239.

    Article  PubMed  CAS  Google Scholar 

  4. Cote, M., Grandijean, B. P. A., Lessard, P., and Yhibault, J. (1995), Water Res. 29, 995–1004.

    Article  CAS  Google Scholar 

  5. Steyer, J. P., Rolland, D., Bouvier, J. C., and Moletta, R. (1997), Water Sci. Technol. 36, 209–217.

    Article  CAS  Google Scholar 

  6. Baffi, G., Martin, E. B., and Morris, A. J. (1999), Comp. Chem. Eng. 23, 1293–1307.

    Article  CAS  Google Scholar 

  7. Gontarski, C. A., Rodrigues, P. R., Mori, M., and Prenem, L. F. (2000), Comp. Chem. Eng. 24, 1719–1723.

    Article  CAS  Google Scholar 

  8. Häck, M. and Köhne, M. (1996), Water Sci. Technol. 33, 101–115.

    Article  Google Scholar 

  9. Oliveira-Esquerre, K. P., Mori, M., and Bruns, R. E. (2002), Braz. J. Chem. Eng. 19, 365–370.

    Article  CAS  Google Scholar 

  10. Pu, H., Hung, Y. (1995), Environ. Manage. Health 6, 16–27.

    Article  Google Scholar 

  11. Wilcox, S. J., Hawkes, D. L., Hawkes, F. R., and Guwy, A. J. (1995), Water Res. 29, 1465–1470.

    Article  CAS  Google Scholar 

  12. Zhao, H., Hao, O. I., Fellow, A. S. C. E., McAvoy, T. J., and Chang, C. H. (1997), J. Environ. Eng. 123, 311–319.

    Article  CAS  Google Scholar 

  13. Chen, S. and Billings, S. A. (1992), Int. J. Control 56, 319–346.

    MATH  MathSciNet  Google Scholar 

  14. Alkulaibi, A. and Soraghan, J. J. (1997), Signal Processing 62, 101–109.

    Article  MATH  Google Scholar 

  15. Maier, H. R. and Dandy, G. C. (2000), Environ. Modelling Software 15, 101–124.

    Article  Google Scholar 

  16. Kanjilal, P. P. (1995), IEEE Trans. Neural Networks 6, 1061–1070.

    Article  Google Scholar 

  17. Kompany-Zared, M. (1999), Talanta 48, 283–292.

    Article  Google Scholar 

  18. Cancilla, D. A. and Fang, X. (1996), J. Great Lagoons Res. 22, 241–253.

    CAS  Google Scholar 

  19. Holcomb, T. R. and Morari, M. (1992), Comp. Chem. Eng. 16, 393–411.

    Article  CAS  Google Scholar 

  20. Despagne, F. and Massart, D. L. (1998), Analyst 123, 157–178.

    Article  Google Scholar 

  21. Geladi, P. and Kowalski, B. R. (1986), Anal. Chim. Acta 185, 1–17.

    Article  CAS  Google Scholar 

  22. Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979), Multivariate Analysis, Academic, London, UK.

    MATH  Google Scholar 

  23. Draper, N. R. and Smith, H. (1981), Applied Regression Analysis, 2nd ed., Wiley, New York, NY.

    MATH  Google Scholar 

  24. Wold, S., Martens, H., and Russwurm, H. (1983), Food Research and Data Analysis, Applied Science Publishers, London, UK.

    Google Scholar 

  25. Wold, S. and Kowalski, B. (1984), Chemometrics: Mathematics and Statistics in Chemistry, Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  26. Henriques, A. W. S., Costa, A. C., Alves, T. L. M., and Lima, E. L. (1999), Braz. J. Chem. Eng. 16, 171–177.

    Article  CAS  Google Scholar 

  27. Cass, R. and Radl, B. (1996), Control Eng. Pract. 4, 1579–1584.

    Article  Google Scholar 

  28. Henrique, H. M. (1999), PhD thesis, PEQ/COPPE/UFRJ, Rio de Janeiro, RJ, Brazil.

    Google Scholar 

  29. Billings, S. A., Chen, S., and Korenberg, M. J. (1989), Int. J. Control 49, 2157–2189.

    MATH  MathSciNet  Google Scholar 

  30. Costa, A. C., Henriques, A. S. W., Alves, T. L. M., Maciel Filho, R., Lima, E. L. (1999), Braz. J. Chem. Eng. 16, 53–63.

    Article  CAS  Google Scholar 

  31. Hornik, K., Stinchcombe, M., and White, H. (1989), Neural Networks 2, 359–366.

    Article  Google Scholar 

  32. Pao, Y. H. (1989), Adaptative Pattern Recognition and Neural Networks, Addison-Wesley, Reading, MA.

    Google Scholar 

  33. Costa, A. C., Alves, T. L. M., Henriques, A. W. S., Maciel Filho, R., and Lima, E. L. (1998), Comp. Chem. Eng. 22(Suppl.), S859-S862.

    Article  CAS  Google Scholar 

  34. Harada, L. H., da Costa, A. C., and Maciel Filho, R. (2002), Appl. Biochem. Biotechnol., 98–100, 1009–1023.

    Article  PubMed  Google Scholar 

  35. Montgomery, D. C., Peck, E. A. (1992), Introduction to Linear Regression Analysis, Wiley, New York, NY.

    MATH  Google Scholar 

  36. Sjöstrom, M. and Wold, S. (1983), Anal. Chim. Acta 150, 61–70.

    Article  Google Scholar 

  37. Ortiz-Estarelles, O., Martín-Biosca, Y., Medina-Hernández, M. J., Sagrado, S., and Bonet-Domingo, E. (2001), Chem. Intel. Lab. Syst. 56, 93–103.

    Article  CAS  Google Scholar 

  38. Todeschine, R. (1997), Anal. Chim. Acta 348, 419–430.

    Article  Google Scholar 

  39. Eigenvector Research (1998) MATLAB PLS Toolbox help. Eigenvector Research Inc., Manson, WA

    Google Scholar 

  40. Barros, B. N., Scarminio, I. S., and Bruns, R. E. (1995), Planejamento e Otimização de Experimentos, UNICAMP Press, Campinas, SP, Brazil.

    Google Scholar 

  41. Morales, M. M., Martí, P., Llopis, A., Campos, L., and Sagrado, S. (1999), Anal. Chim. Acta 394, 109–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Patricia Oliveira-Esquerre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira-Esquerre, K.P., da Costa, A.C., Bruns, R.E. et al. Simulation of aerated lagoon using artificial neural networks and multivariate regression techniques. Appl Biochem Biotechnol 106, 437–449 (2003). https://doi.org/10.1385/ABAB:106:1-3:437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:106:1-3:437

Index Entries

Navigation