Skip to main content
Log in

Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We changed the fluxes of xylose metabolites in recombinant Saccharomyces cerevisiae by manipulating expression of Pichia stipitis genes (XYL1 and XYL2) coding for xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively. XYL1 copy number was kept constant by integrating it into the chromosome. Copy numbers of XYL2 were varied either by integrating XYL2 into the chromosome or by transforming cells with XYL2 in a multicopy vector. Genes in all three constructs were under control of the strong constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. Enzymatic activity of XR and XDH in the recombinant strains increased with the copy number of XYL1 and XYL2. XR activity was not detected in the parent but was present at a nearly constant level in all of the transformants. XDH activity increased 12-fold when XYL2 was on a multicopy vector compared with when it was present in an integrated single copy. Product formation during xylose fermentation was affected by XDH activity and by aeration in recombinant S. cerevisiae. Higher XDH activity and more aeration resulted in less xylitol and more xylulose accumulation during xylose fermentation. Secretion of xylulose by strains with multicopy XYL2 and elevated XDH supports the hypothesis that d-xylulokinase limits metabolic flux in recombinant S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotech. 20/21, 391–401.

    Article  Google Scholar 

  2. Maiorella, B. L., Blanch, H. W., and Wilke, C. R. (1984), Biotechnol. Bioeng. 26, 1003–1025.

    Article  CAS  Google Scholar 

  3. Jeffries, T. W. (1985), Trends Biotechnol. 3, 208–212.

    Article  CAS  Google Scholar 

  4. Casey, G. P. and Ingledew, W. M. M. (1986), Crit. Rev. Microbiol. 13, 219–280.

    PubMed  CAS  Google Scholar 

  5. Chiang, L.-C., Gonng, C.-S., Chem, L.-F., and Tsao, G. T. (1981), Appl. Environ. Microbiol. 42, 284–289.

    PubMed  CAS  Google Scholar 

  6. Senac, T. and Hahn-Hägerdal, B. (1990), Appl. Envinron. Microbiol. 56, 120–126.

    CAS  Google Scholar 

  7. Wang, P. P. and Schneider, H. (1980), Can. J. Microbiol. 26, 1165–1168.

    Article  PubMed  CAS  Google Scholar 

  8. Jeffries, T. W. and Shi, N. Q. (1999), Adv. Biochem. Eng. Biotechnol. 65, 117–161.

    PubMed  CAS  Google Scholar 

  9. Kötter, P., Amore, R., Hollenberg, C. P., and Ciriacy, M. (1990), Curr. Genet. 18, 493–500.

    Article  PubMed  Google Scholar 

  10. Tantirungkij, M., Nakashima, N., Seki, T., and Yoshida, T. (1993), J. Ferment. Bioeng. 75, 83–88.

    Article  CAS  Google Scholar 

  11. Walfridsson, M., Anderlund, M., Bao, X., and Hahn-Hägerdal, B. (1997), Appl. Microbiol. Biotechnol. 48, 218–224.

    Article  PubMed  CAS  Google Scholar 

  12. Jin, Y. S., Lee, T. H., Choi, Y. D., Ryu, Y. W., and Seo, J. H. (2000), J. Microbiol. Biotechnol. 10, 564–567.

    CAS  Google Scholar 

  13. Tantirungkij, M., Izuishi, T., Seki, T., and Yoshida, T. (1994), Appl. Microbiol. Biotechnol. 41, 8–12.

    CAS  Google Scholar 

  14. Verduyn, C., Van Kleef, R., Frank, J., Schreuder, H., Van Dijken, J. P., and Scheffers, W. A. (1985), Biochem. J. 226, 669–677.

    PubMed  CAS  Google Scholar 

  15. Rizzi, M., Harwart, K., Erlemann, P., Buithanh, N. A., and Dellweg, H. (1989), J. Ferment. Bioeng. 67, 20–24.

    Article  CAS  Google Scholar 

  16. Bruinenberg, P. M., de Bot, P. H. M., van Dijken, J. P., and Scheffers, W. A. (1983), Eur. J. Appl. Microbiol. Biotechnol. 18, 287–292.

    Article  CAS  Google Scholar 

  17. Cho, K. M., Yoo, Y. J., and Kang, H. S. (1999), Enzyme Microb. Technol. 25, 23–30.

    Article  CAS  Google Scholar 

  18. Lu, P., Davis, B. P., Hendrick, J., and Jeffries, T. W. (1998), Appl. Microbiol. Biotechnol. 49, 141–146.

    Article  PubMed  CAS  Google Scholar 

  19. Cooper, C. M., Fernstrom, G. A., and Miller, S. A. (1944), Ind. Eng. Chem. 36, 504–509.

    Article  CAS  Google Scholar 

  20. Sikorski, R. S. and Hieter, P. (1989), Genetics 122, 19–27.

    PubMed  CAS  Google Scholar 

  21. Rose, M. D., Winston, F., and Hieter, P. (1990), Methods in Yeast Genetics: A Laboratory Course Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY.

    Google Scholar 

  22. Lachke, A. and Jeffries, T. W. (1986), Enzyme Microb. Technol. 8, 353–359.

    Article  CAS  Google Scholar 

  23. Ho, N. W. Y., Chen, Z. D., and Brainard, A. P. (1998), Appl. Environ. Microbiol. 64, 1852–1859.

    PubMed  CAS  Google Scholar 

  24. Walfridsson, M., Hallborn, J., Penttila, M., Keranen, S., and Hahn-Hägerdal, B. (1995), Appl. Environ. Microbiol. 61, 4184–4190.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Jeffries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, YS., Jeffries, T.W. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae . Appl Biochem Biotechnol 106, 277–285 (2003). https://doi.org/10.1385/ABAB:106:1-3:277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:106:1-3:277

Index Entries

Navigation