Applied Biochemistry and Biotechnology

, Volume 104, Issue 3, pp 199–214 | Cite as

Mass transfer and benzene removal from air using latex rubber tubing and a hollow-fiber membrane module

  • Mark Fitch
  • Jeffrey Neeman
  • Ellen England


A dense-phase latex rubber tube and a polyporous propylene hollow-fiber membrane module (HFMM) were investigated for control of benzene-contaminated gas streams. The abiotic mass flux observed through the latex tube was 3.9–13 mg/(min·m2) for 150 ppm of benzene at various gas and liquid flow rates, while a 100-fold lower mass flux was observed in the HFMM. After seeding with an aromatic-degrading culture enriched from activated sludge, the observed removal was 80% of 150 ppm, corresponding toa mass flux of 45 mg/(min·m2). The observed mass flux through the HFMM during biofiltration also rose, to 0.4 mg/(min·m2). Because the HFMM had a 50-fold higher surface area than the latex tube, the observed ben zene removal was 99.8%. Compared to conventional biofilters, the two reactors had modest elimination capacities, 2.5–18 g/(m3·h) in the latex tube membrane bioreactor and 4.8–58 g/(m3·h) in the HFMM. Although the HFMM had a higher elimination capacity, the gas-phase pressure drop was much greater.

Index Entries

Biofiltration biofilter benzene membrane latex hollowfiber membrane module biokinetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    United States Environmental Protection Agency. (1998), National Air Quality and Emissions Trends Report, 1996. USEPA Internet site Scholar
  2. 2.
    Govind, R. and Bishop, D. (1994), in Annual RREL Research Symposium (20th) Abstract Proceedings, March 15–17, 1994 U.S. EPA, National Center for Environmental Publications and Information, Cincinnati, OH, pp. 109–115.Google Scholar
  3. 3.
    Groenestijn, J. and Hesselink, P. (1993), Biodegradation 4, 283–301.CrossRefGoogle Scholar
  4. 4.
    Wani, A., Branion, R., and Lau, A. (1997), J. Environ. Sci. Health A 32(7), 2027–2055.CrossRefGoogle Scholar
  5. 5.
    Uijlenbroek, J. (1990), Proc. Eng. 71 (3), 53–57.Google Scholar
  6. 6.
    Matteau, Y. and Ramsay, B. (1997), Biodegradation 8(3), 135–141.CrossRefGoogle Scholar
  7. 7.
    Shareefdeen, Z., Baltzis, B., Oh, Y., and Bartha, R. (1993), Biotechnol. Bioeng. 41(5), 512–524.CrossRefGoogle Scholar
  8. 8.
    Beeton, S., Milward, H., Bellhouse, B., Nicholson, A., Jenkins, N., and Knowles, C. (1991), Biotechnol. Bioeng. 38(10), 1233–1238.CrossRefGoogle Scholar
  9. 9.
    Ergas, S. and McGrath, M. (1997), J. Environ. Eng. 123(6), 593–598.CrossRefGoogle Scholar
  10. 10.
    Freitas dos Santos, L., Hommerish, U., and Livingston, A. (1995), Biotechnol. Prog. 11, 194–201.CrossRefGoogle Scholar
  11. 11.
    Parvatiyar, M., Govind, R., and Bishop, D. (1996), Biotechnol. Bioeng. 50(1), 57–64.CrossRefGoogle Scholar
  12. 12.
    Pundit, A., Govind, R., and Bishop, D. (1994), Annual RREL Research Symposium (20th) Abstract Proceedings, March 15–17, 1994, U.S. EPA, National Center for Environmental Publications and Information, Cincinnati, OH, pp. 115–122.Google Scholar
  13. 13.
    Reij, M., de Gooijer, K., de Bont, J., and Hartmans, S. (1995), Biotechnol. Bioeng. 45(2), 107–115.CrossRefGoogle Scholar
  14. 14.
    Reij, M., Hamann, E., and Hartsmans, S. (1997), Biotechnol. Prog. 13(4), 380–386.CrossRefGoogle Scholar
  15. 15.
    Freitas dos Santos, L. and Livingston, A. (1995), Biotechnol. Bioeng. 47, 82–89.CrossRefGoogle Scholar
  16. 16.
    Freitas dos Santos, L. and Livingston, A. (1995), Biotechnol. Bioeng. 47, 90–95.CrossRefGoogle Scholar
  17. 17.
    Livingston, A. G. (1993), Biotechnol. Bioeng. 41(10), 915–926.CrossRefGoogle Scholar
  18. 18.
    Ergas, S., Shumway, L., Fitch, M., and Neemann, J. (1999), Biotechnol. Bioeng. 63(4), 431–441.CrossRefGoogle Scholar
  19. 19.
    American Public Health Association, American Water Works Association and Water Environment Federation. (1995), Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC.Google Scholar
  20. 20.
    Harkins, B., Boehm, T., and Wilson, D. (1988), Sep. Sci. Technol. 23(1–3), 91–104.Google Scholar
  21. 21.
    Corseuil, H. and Weber, W. J., Jr. (1994), Water Res. 28(6), 1415–1423.CrossRefGoogle Scholar
  22. 22.
    Metcalf and Eddy, Inc. (1991), Wasterwater Engineering: Treatment, Disposal, Reuse, McGraw-Hill, New York.Google Scholar
  23. 23.
    Oh, Y., Shareefden, Z., Baltzis, B., and Bartha, R. (1994), Biotechnol. Bioeng. 44(4), 533–538.CrossRefGoogle Scholar
  24. 24.
    Aziz, C., Fitch, M., Linquist, L., Pressman, J., Georgiou, G., and Speitel, G. (1995), Environ. Sci. Technol. 29(10), 2574–2583.Google Scholar
  25. 25.
    Characklis, W. and Marshall, K. (1990), Biofilms, John Wiley & Sons, Inc., New York.Google Scholar
  26. 26.
    Alvarez, P. and Vogel, T. (1991), Appl. Environ. Microbiol. 57(10), 2981–2985.Google Scholar
  27. 27.
    Lang, E. (1996), Lett. Appl. Microbiol. 23, 257–260.Google Scholar
  28. 28.
    Morgan, P., Lewis, S., and Watkinson, R. (1993), Environ. Pollut. 82, 181–190.CrossRefGoogle Scholar
  29. 29.
    Shumway, L. (1997), MS thesis, University of Massachusetts, Am herst.Google Scholar
  30. 30.
    Debus, O., Baumgartl, H., and Sekoulov, I. (1994), Water Sci. Technol. 29(10–11), 253–262.Google Scholar
  31. 31.
    Devinny, J., Deshusses, M., and Webster, T. (1999), Biofilt ration for Air Pollution Control, Lewis, Boca Raton, FL.Google Scholar
  32. 32.
    Aizpuru, A., Malhautier, L., Roux, J., and Fanlo, J. (2001), J. Air Waste Manage. Assoc. 51, 1662–1670.Google Scholar
  33. 33.
    Lu, C., Chu, W., and Lin, M. (2000), J. Air Waste Manage. Assoc. 50(3), 411–417.Google Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of Missouri-RollaRolla
  2. 2.Black & VeatchKansas City

Personalised recommendations