Advertisement

Applied Biochemistry and Biotechnology

, Volume 102, Issue 1–6, pp 303–313 | Cite as

Immobilization of α-amylase from Bacillus circulans GRS 313 on coconut fiber

  • Gargi Dey
  • Varima Nagpal
  • Rintu Banerjee
Article

Abstract

A simple and inexpensive method for immobilizing α-amylase from Bacillus circulans GRS 313 on conconut fiber was developed. The immobilization conditions for highest efficiency were optimized with respect to immobilization pH of 5.5, 30°C, contact time of 4 h, and enzyme to support a ratio of 1:1 containing 0.12 mg/mL of protein. The catalytic properties of the immobilized enzyme were compared with that of the free enzyme. The activity of amylase adsorbed on coconut fiber was 38.7 U/g of fiber at its optimum pH of 5.7 and 48°C, compared with the maximum activity of 40.2 U/mL of free enzyme at the optimum pH of 4.9 and 48°C. The reutilization capacity of the immobilized enzyme was up to three cycles.

Index Entries

Coconut fiber adsorption response surface methodology amylase Bacillus circulans GRS 313 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Emne’us, J. and Gorton, J. (1990), Anal. Chim. Acta 234, 97–106.CrossRefGoogle Scholar
  2. 2.
    Zanin, G. M., Kambara, L. M., Calsavara, L. P. V., and De Moraes, F. F. (1994), Appl. Biochem. Biotechnol. 45–46, 627–640.CrossRefGoogle Scholar
  3. 3.
    Strumeyer, D. H., Constantinides, A., and Freudenberger, J. (1974), J. Food Sci. 39, 498–502.CrossRefGoogle Scholar
  4. 4.
    Murao, S., Inui, M., and Arai, M. (1977), Hakko Kogaku Kaishi 55, 75–77.Google Scholar
  5. 5.
    Linko, Y. Y., Saarinen, P., and Linko, M. (1975), Biotechnol. Bioeng. 17, 153–159.CrossRefGoogle Scholar
  6. 6.
    Tanyolac’, D., Yuruksoy, B. I., and Ozdural, A. R. (1998), Biochem. Eng. J. 2, 179–186.CrossRefGoogle Scholar
  7. 7.
    Tien, C. J. and Chiang, B. H. (1999), Proc. Biochem. 35, 377–383.CrossRefGoogle Scholar
  8. 8.
    Konduru, S., Evans, M. R., and Stamps, R. H. (1999), Hort. Sci. 34, 1–4.Google Scholar
  9. 9.
    Bernfeld, P. (1955), Methods in Enzymology, Academic, New York.CrossRefGoogle Scholar
  10. 10.
    Abdel-Naby, M. A., Ismail, A. S., Abdel-Fattah, A. M., and Abdel-Fattah A. F. (1999), Process Biochem. 34, 391–398.CrossRefGoogle Scholar
  11. 11.
    Box, G. E. P. and Hunter, J. S. (1957), Ann. Math. Stat. 28, 195–241.MathSciNetGoogle Scholar
  12. 12.
    Khuri, A. L. and Cornell, J. A. (1987), Statistics: Textbooks and Monographs, Marcell Dekker, New York.Google Scholar
  13. 13.
    Bernath, F. R. and Vieth, W. R. (1974), Immobilized Enzymes in Food and Microbial Processes, Plenum, New York.Google Scholar
  14. 14.
    Alkorta, I., Garbisu, C., Llama, M. J., and Serra, J. L. (1996), Enzyme Microb. Technol. 18, 141–146.CrossRefGoogle Scholar
  15. 15.
    Lartigue, D. J. (1975), Immobilized Enzymes for Industrial Reactors, Academic, New York.Google Scholar
  16. 16.
    Sunitha, J. and Sai Prakash, P. K. (1994), Ind. J. Biochem. Biophys. 31, 486–489.Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  1. 1.Microbial Biotechnology & Downstream Processing LaboratoryAgricultural & Food Engineering DepartmentIIT-KharagpurIndia

Personalised recommendations