Skip to main content
Log in

Significance of fluid regime and wetted area in biofilm reactors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mass transfer within microbial films was described using Monod-type biological kinetics in terms of properties of filter media and feed solution. The performance characteristics of a trickling filter were thus modeled. The model enables one to consider the effect of inlet substrate concentration and flow rate upon the removal efficiency. For this purpose a second-order partial differential equation describing the dispersion phenomena inside the liquid layer was solved under special boundary conditions and used to determine substrate flux into the biofilm. A uniform biofilm thickness was considered. The model is based on computer techniques and the numerical evaluation of the normalized biofilm mathematical model. A design procedure was also given to calculate biological filters. The numerical model was also applied to experimental data to demonstrate its validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

radius of sphere, L

A :

cross sectional area, L2

B s :

dimensionless substrate concentration at liquid biofilm interface

C :

dimensionless substrate concentration defined as c/c i

C x :

dimensionless concentration defined as c x/c i

c :

bulk substrate concentration, M L−3

c x :

substrate concentration at any location in liquid phase, M L−3

c f :

substrate concentration within biofilm, M L−3

D c :

the diffusivity of substrate in the biofilm, L2 T−1

D w :

molecular diffusivity of substrate in liquid, L2 T−1

h :

liquid film thickness, L

K :

dimensionless ratio of mass transfer rate to kinetic rate

K s :

Monod-half velocity coefficient, M L−3

k :

maximum utilization rate of rate limiting substrate, T−1

k1=kXc/Ks:

a biological rate equation coefficient, T−1

k2=(k1/Dc)1/2:

a coefficient related to a solid phase diffusional limitation, L−1

k3=1/Ks:

a biological rate equation coefficient, M−1 L−3

L :

microbial film thickness, L

l :

dimensional filter length, L

M :

dimensionless biofilm thickness

N :

substrate flux, M L−2 T−1

q :

flow rate per unit width of the biofilm, L3T−1 L−1

Q :

volumetric flow rate, L3 T−1

Q A :

hydraulic loading rate, L3 T−1 L−2

S :

specific surface area, L2 L−3

w av :

average velocity of liquid in z direction, L T−1

w max :

maximum velocity at the liquid surface, L T−1

X c :

microbial density within biofilm, M L−3

x :

distance measured normal to the flow direction, L

z :

axial distance measured in flow direction from origin, L

α:

dimensionless filter length

γ:

liquid specific gravity, M L−2 T−2

η:

biological removal ratio = biological efficiency

ηD = ξ/D w h :

a parameter to express Cx as a function of ZD and X

μ:

dynamic viscosity, M L−1 T−1

Ω:

proportionality constant to express wetting rate, dimensionless

ξ:

a proportionality factor in Eq. 1, L T−1

References

  1. Atkinson, B. and Daoud, I. S. (1970), Trans. Inst. Chem. Engrs. 48, 245–254.

    CAS  Google Scholar 

  2. Atkinson, B. and Williams, D. A. (1971), Trans. Inst. Chem. Engrs. 49, 215–224.

    CAS  Google Scholar 

  3. Atkinson, B. and Davies, I. J. (1974), Trans. Inst. Chem. Engrs. 52, 248–259.

    CAS  Google Scholar 

  4. Atkinson, B. and How, S. Y. (1974), Trans. Inst. Chem. Engrs. 52, 260–268.

    Google Scholar 

  5. Atkinson, B. and Abdel Rahman Ali, M. E. (1976), Water Res. 12, 147–156.

    Article  Google Scholar 

  6. Crine, M., Schlitz, M., and Vandevenne, L. (1991), Chem. Eng. J. 46, B59-B68.

    Article  CAS  Google Scholar 

  7. Hinson, X. and Kocher, Y. (1996), J. Environ. Engrg. ASCE 122(11), 1023–1030.

    Article  CAS  Google Scholar 

  8. Muslu, Y. (1983), Water Res. 17(1), 105–115.

    Article  CAS  Google Scholar 

  9. Muslu, Y. and Sansarcı, H. (1983), Calculation of substrate removal efficiency in biological filters using a numerical approach (in Turkish), Çevre 83 Sempozyumu, Dokuzeylul Üniv. Muh. Mim. Fak., Bornova, Izmir, Turkey.

    Google Scholar 

  10. Muslu, Y. (1984), J. Environ. Engrg. ASCE 110(5), 961–975.

    CAS  Google Scholar 

  11. Muslu Y. and Ürun H. (1986), ITU Dergisi 44(1–2), 43–48.

    Google Scholar 

  12. Muslu, Y. (1993), J. Chem. Tech. Biotech. 57(2), 127–135.

    Article  CAS  Google Scholar 

  13. Muslu, Y. (1995), J. Environ. Engrg. ASCE 121(1), 66–83.

    Article  CAS  Google Scholar 

  14. Parker, D. S. (1999), J. Environ. Engrg: ASCE 125(7), 618–625.

    Article  CAS  Google Scholar 

  15. Rittman, B. E. and McCarty, P. L. (1981), J. Environ. Engrg. Div. ASCE 107(4), 889–900.

    Google Scholar 

  16. Sekerdag, N. and Muslu, Y. (1986), One dimensional dispersion in biological filters, Part II (in Turkish). Doga TU Müh. Ve Çev. D. (TÜB_TAK), Ankara, Turkey, 10(3), 298–307.

    Google Scholar 

  17. Suidan, M. T. (1986), J. Environ. Engrg. ASCE 112(1), 78–93.

    Article  CAS  Google Scholar 

  18. Suidan, M. T., Rittman, B. E., and Traegner, U. K. (1987), Water Res. 21(4), 491–498.

    Article  CAS  Google Scholar 

  19. Williamson, K. and McCarty, P. L. (1976), J. Water Pollution Control Fed. 48(1), 9–24.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muslu, Y. Significance of fluid regime and wetted area in biofilm reactors. Appl Biochem Biotechnol 101, 177–195 (2002). https://doi.org/10.1385/ABAB:101:3:177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:101:3:177

Index Entries

Navigation