Skip to main content
Log in

Possibilities for recycling cellulases after use in cotton processing

Part I: Effects of end-product inhibition, thermal and mechanical deactivation, and cellulase depletion by adsorption

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Preliminary recycling experiments with cellulase enzymes after cotton treatments at 50°C showed that activity remaining in the treatment liquors was reduced by about 80% after five recycling steps. The potential problems of end-product inhibition, thermal and mechanical deactivation, and the loss of some components of the cellulase complex by preferential and or irreversible adsorption to cotton substrates were studied. End-product inhibition studies showed that the build-up of cellobiose and glucose would be expected to cause no more than 40% activity loss after five textile treatment cycles. Thermal and mechanical treatments of cellulases suggested that the enzymes start to be deactivated at 60°C and agitation levels similar to those used in textile processing did not cause significant enzyme deactivation. Analysis of cellulase solutions, by fast protein liquid chromatography, before and after adsorption on cotton fabrics, suggested that the cellobiohydrolase II (Ce16A) content of the cellulase complex was reduced, relative to the other components, by preferential adsorption. This would lead to a marked reduction in activity after several treatment cycles and top-up with pure cellobiohydrolase II would be necessary unless this component is easily recoverable from the treated fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medve, J., Ståhlberg, J., and Tjerneld, F. (1994), Biotech. Bioeng. 44, 1064–1073.

    Article  CAS  Google Scholar 

  2. Cavaco-Paulo, A. (1998), Carbohydr. Polym. 37, 273–277.

    Article  CAS  Google Scholar 

  3. Medve, J., Karlsson, J., Lee, D., and Tjerneld, F. (1998), Biotechnol. Bioeng. 59, 621–634.

    Article  PubMed  CAS  Google Scholar 

  4. Srisodsuk, M., Kleman-Leyer, K., Keränen, S., Kirk, T. K., and Teeri, T. T. (1998), Eur. J. Biochem. 251, 885–892.

    Article  PubMed  CAS  Google Scholar 

  5. Henrissat, B., Teeri, T. T., and Warren, R. A. J. (1998), FEBS Lett. 425, 352–354.

    Article  PubMed  CAS  Google Scholar 

  6. Cavaco-Paulo, A., Morgado, J., Andreaus, J., and Kilburn, D. (1999), Enzyme Microb. Technol. 25, 639–646.

    Article  CAS  Google Scholar 

  7. Heikinheimo, L., Cavaco-Paulo, A., Nouisiainen, P., Siika-aho, M., and Buchert, J. (1998), J. Soc. Dyers Colourists 114, 216–220.

    CAS  Google Scholar 

  8. Gregg, D. J. and Saddler, J. N. (1996), Biotechnol. Bioeng. 51, 375–383.

    Article  CAS  Google Scholar 

  9. Moniruzzaman, M., Dale, B. E., Hespell, R. B., and Bothast, R. J. (1997), Appl. Biochem. Biotechnol. 67, 113–126.

    Article  CAS  Google Scholar 

  10. Lee D., Yu, A. H. C., and Saddler J. N. (1995), Biotech. Bioeng. 45, 328–336.

    Article  CAS  Google Scholar 

  11. Ramos, L. P. and Saddler, J. N. (1994), Appl. Biochem. Biotechnol. 45–46, 193–207.

    Google Scholar 

  12. Ramos, L. P., Breuil, C., and Saddler, J. N. (1993), Enzyme Microb. Technol. 15, 19–25.

    Article  CAS  Google Scholar 

  13. Gusakov, A. V. and Sinitsyn, A. P. (1992), Biotechnol. Bioeng. 40, 663–671.

    Article  CAS  Google Scholar 

  14. Holtzapple, M., Cognata, M., Schu, Y., and Hendricksson, C. (1990), Biotechnol. Bioeng. 36, 275–287.

    Article  CAS  Google Scholar 

  15. Lee, Y.-H. and Fan, L. T. (1983), Biotechnol. Bioeng. 25, 939–966.

    Article  CAS  Google Scholar 

  16. Calsavara, L. P. V., Moraes, F. F., and Zanin, G. M. (1999), Appl. Biochem. Biotechnol. 77–79, 789–806.

    Article  PubMed  Google Scholar 

  17. Vallander, L. and Eriksson, K.-E. (1987), Enzyme Microb. Technol. 9, 714–720.

    Article  CAS  Google Scholar 

  18. Ganesh, K., Joshi, J. B., and Sawant, S. B. (2000), Biochem. Eng. J. 4, 137–141.

    Article  CAS  Google Scholar 

  19. Reese, E. T. (1980), J. Appl. Biochem. 2, 36–39.

    CAS  Google Scholar 

  20. Kaya, F., Heitmann, J. A., Jr., and Joyce, T. W. (1996), Cellulose Chem. Technol. 30, 49–56.

    CAS  Google Scholar 

  21. Furcht, P. W. and Silla, H. (1990), Biotechnol. Bioeng. 35, 630–645.

    Article  CAS  Google Scholar 

  22. Kim, M. H., Lee, S. B., Ryu, D. D. Y., and Reese, E. T. (1982), Enzyme Microb. Technol. 4, 99–103.

    Article  CAS  Google Scholar 

  23. Baker, J. O., Tatsumoto, K., Grohmann, K., Woodward, J., Wichert, J. M., Shoemaker, S. P., and Himmel, M. E. (1992), Appl. Biochem. Biotechnol. 34–35, 217–231.

    Google Scholar 

  24. Ooshima, H., Kurakake, M., Kato, J., and Harano, Y. (1991), Appl. Biochem. Biotechnol. 31, 253–266.

    Article  PubMed  CAS  Google Scholar 

  25. Cavaco-Paulo, A. Almeida, L., and Bishop, D. (1996), Textile Chemist Colorist 28(6), 28–32.

    CAS  Google Scholar 

  26. Reinikainen, T. (1994), PhD thesis, University of Turku, Turku, Finland.

    Google Scholar 

  27. Srisodsuk, M. (1994), PhD thesis, University of Helsinki, Helsinki, Finland.

    Google Scholar 

  28. Bradford, M. M. (1976), Anal. Biochem. 72, 248–255.

    Article  PubMed  CAS  Google Scholar 

  29. Cavaco-Paulo, A., Almeida, L., and Bishop, D. (1996), Textile Res. J. 66(5), 287–294.

    CAS  Google Scholar 

  30. Dekker, R. F. H. (1986), Biotechnol. Bioeng. 28, 1438–1442.

    Article  CAS  Google Scholar 

  31. Andreaus, J., Azevedo, H., and Cavaco-Paulo, A. (1999), J. Molecular Catalysis B: Enzymatic 7, 233–239.

    Article  CAS  Google Scholar 

  32. Bailey, J. E. and Ollis, D. F. (1987), Biochemical Engineering Fundamentals, McGraw-Hill, New-York.

    Google Scholar 

  33. Permyakov, E. A. (1993), Luminescent Spectroscopy of Proteins, CRC Press, Boca Raton, FL.

    Google Scholar 

  34. Linder, M. and Teeri, T. T. (1996), Proc. Natl. Acad. Sci. USA 93, 12,251–12,255.

    Article  CAS  Google Scholar 

  35. Carrard, G. and Linder, M. (1999), Eur. J. Biochem. 262, 637–643.

    Article  PubMed  CAS  Google Scholar 

  36. Kotiranta, P., Karlsson, J., Siika-aho, M., Medve, J., Viikari, L., Tjerneld, F., and Tenkanen, M. (1999), Appl. Biochem. Biotechnol. 81, 81–90.

    Article  PubMed  CAS  Google Scholar 

  37. Azevedo, H., Bishop, D., and Cavaco-Paulo, A. (2000), Enzyme Microb. Technol. 27, 325–329.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Cavaco-Paulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azevedo, H., Bishop, D. & Cavaco-Paulo, A. Possibilities for recycling cellulases after use in cotton processing. Appl Biochem Biotechnol 101, 61–75 (2002). https://doi.org/10.1385/ABAB:101:1:61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:101:1:61

Index Entries

Navigation