Skip to main content
Log in

Effect of starting xylose concentration on the microaerobic metabolism of Debaryomyces hansenii

The use of carbon material balances

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylitol production by Debaryomyces hansenii NRRL Y-7426 was performed on synthetic medium varying the initial xylose concentration between 50 and 300 g/L. The experimental results of these tests were used to investigate the effect of substrate level on xylose consumption by this yeast. Satisfactory values of product yield on substrate (0.74–0.83 g/g) as well as volumetric productivity (0.481–0.694 g/L·h) were obtained over a wide range of xylose levels (90–200 g/L), while a worsening of kinetic parameters took place at higher concentration, likely due to a substrate inhibition phenomenon. The metabolic behavior of D. hansenii was studied, under these conditions, through a carbon material balance to estimate the fractions of xylose consumed by the cell for different activities (xylitol production, biomass growth, and respiration) during the lag, exponential, and stationary phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emodi, A. (1978), Food Technol. 1, 28–32.

    Google Scholar 

  2. Ylikahri, R. (1979), Adv. Food Res. 25, 159–180.

    PubMed  CAS  Google Scholar 

  3. Pepper, T. and Olinger, P. M. (1988), Food Technol. 42, 98–106.

    Google Scholar 

  4. Parajó, J. C., Domínguez, H., and Domínguez, J. M. (1998), Biores. Technol. 65, 191–201.

    Article  Google Scholar 

  5. Parajó, J. C., Domínguez, H., and Domínguez, J. M. (1998), Biores. Technol. 65, 203–212.

    Article  Google Scholar 

  6. Taylor, K. B., Beck, M. J., Huang, D. H., and Sakai, T. T. (1990), J. Ind. Microbiol. 6, 29–41.

    Article  CAS  Google Scholar 

  7. Skoog, K. and Hahn-Hägerdal, B. (1988), Enzyme Microb. Technol. 2, 66–88.

    Article  Google Scholar 

  8. Prior, B. A., Kilian, S. G., and du Preez, J. C. (1989), Process Biochem. 89, 21–32.

    Google Scholar 

  9. Gírio, F. M., Amaro, C., Azinheira, H., Pelica, F., and Amaral-Collaço, M. T. (1999), Biores. Technol. 71, 245–251.

    Article  Google Scholar 

  10. Bruinenberg, P., de Bot, P. H., van Dijken, J. P., and Scheffers, W. A. (1984), Appl. Microbiol. Biotechnol. 19, 256–260.

    Article  CAS  Google Scholar 

  11. Rizzi, M., Erlemann, P., Bui-Thanh, N-A., and Dellweg, H. (1988), Appl. Microbiol. Biotechnol. 29, 148–154.

    Article  CAS  Google Scholar 

  12. du Preez, J. C., van Driessel, B., and Prior, B. A. (1989), Biotechnol. Lett. 11, 131–136.

    Article  Google Scholar 

  13. Amaral-Collaço, M. T., gírio, F. M., and Peito, M. A. (1989), in Enzyme System for Lignocellulosic Degradation, Coughan, M. P. (ed.), Elsevier, London, pp. 221–230.

    Google Scholar 

  14. Roseiro, J. C., Peito, M. A., Gírio, F. M., and Amaral-Collaço, M. T. (1991), Arch. Microbiol. 156, 484–490.

    CAS  Google Scholar 

  15. Nobre, A., Lucas, C., and Leão, C. (1999), Appl. Environ. Microbiol. 65, 3594–3598.

    PubMed  CAS  Google Scholar 

  16. Barbosa, M. F. S., Medeiros, M. B., Mancilha, I., Schneider, H., and Lee, H. (1988), J. Ind. Microbiol. 3, 241–251.

    Article  CAS  Google Scholar 

  17. Domínguez, J. M., Gong, C. S., and Tsao, G. T. (1997), Appl. Biochem. Biotechnol. 63/65, 117–127.

    Article  Google Scholar 

  18. Nolleau, V., Preziosi-Belloy, L., Delgenes, J. P., and Navarro, J. M. (1993), Curr. Microbiol. 27, 191–197.

    Article  CAS  Google Scholar 

  19. Silva, S. S. and Afschar, A. S. (1994), Bioproc. Eng. 11, 129–134.

    Google Scholar 

  20. Chen, L. F. and Gong, C. S. (1985), J. Food Sci. 50, 226–228.

    Article  CAS  Google Scholar 

  21. Meyrial, V., Delgenes, J. P., Moletta, R., Navarro, J. M., and Inra, I. A. A. (1991), Biotechnol. Lett. 13, 281–286.

    Article  CAS  Google Scholar 

  22. Gong, C. S., Chen, L. F., and Tsao, G. T. (1981), Biotechnol. Lett. 3, 125–130.

    Article  CAS  Google Scholar 

  23. Thonart, P., Gómez, J., Foucart, M., and Paquot, M. (1987), in Medicine Faculty Landbouw, vol. 52, Rijksuniversitat, Gent, Belgium, 1517–1528.

    Google Scholar 

  24. Jansen, N. B., Flickinger, M. C., and Tsao, G. T. (1984), Biotechnol. Bioeng. 26, 362–369.

    Article  CAS  Google Scholar 

  25. Converti, A., Perego, P., and Domínguez, J. M. (1999), Appl. Biochem. Biotechnol. 82, 141–151.

    Article  CAS  Google Scholar 

  26. Converti, A., Perego, P., Domínguez, J. M., and Silva, S. S. (2001), Enzyme Microb. Technol. 25, 339–345.

    Article  Google Scholar 

  27. Converti, A. and Domínguez, J. M. (2001), Biotechnol. Bioeng. 75, 39–45.

    Article  PubMed  CAS  Google Scholar 

  28. Parajó, J. C., Domínguez, H., and Domínguez, J. M. (1998), Biores. Technol. 66, 25–40.

    Article  Google Scholar 

  29. van Gulik, W. M. and Heijnen, J. J. (1995) Biotechnol. Bioeng. 48, 681–698.

    Article  Google Scholar 

  30. Granström, T. B., Aristidou, A. A., Jokela, J., and Leisola, M. (2000), Biotechnol. Bioeng. 70, 197–207.

    Article  PubMed  Google Scholar 

  31. Roels, J. A. (1983), in Energetics and Kinetics in Biotechnology, Elsevier Biomedical Press, Amsterdam, NL, pp. 99–129.

    Google Scholar 

  32. Gírio, F. M., Pelica, F., and Amaral-Collaço, M. T. (1996), Appl. Biochem. Biotechnol. 56, 79–87.

    Google Scholar 

  33. Silva, S. S., Vitolo, M., Pessoa, A. Jr., and Felipe, M. G. A. (1996), J. Basic Microbiol. 36, 187–191.

    Article  CAS  Google Scholar 

  34. Gírio, F. M., Peito, M. A., Amaral-Collaço, M. T. (1990), in Biomass for Energy and Industry, vol. 2, Grassi, G., Gosse, G., and dos Santos, G. (eds.), Elsevier, Amsterdam.

    Google Scholar 

  35. Parajó, J. C., Domínguez, H., and Domínguez, J. M. (1996), Bioproc. Eng. 16, 39–43.

    Article  Google Scholar 

  36. Ciftci, T., Constantinides, A., and Wang, S. S. (1983), Biotechnol. Bioeng. 25, 2007–2023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attilio Converti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Converti, A., Perego, P., Sordi, A. et al. Effect of starting xylose concentration on the microaerobic metabolism of Debaryomyces hansenii . Appl Biochem Biotechnol 101, 15–29 (2002). https://doi.org/10.1385/ABAB:101:1:15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:101:1:15

Index Entries

Navigation