Skip to main content
Log in

Immobilization and stabilization of biomaterials for biosensor applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biosensors are finding applications in a variety of analytical fields. A biosensor basically consists of a transducer in conjunction with a biologically active molecule that converts a biochemical signal into a quantifiable electric response. The specificity of the biosensor depends on the selection of the biomaterial. Enzymes, antibodies, DNA, receptors, organelles, microorganisms as well as animal and plant cells or tissues have been used as biologic sensing materials. Advances in biochemistry, molecularbiology, and immunochemistry are expected to lead to a rapid expansion in the range of biologic recognition elements to be used in the field of biosensors. Biomaterials that are stable and function even in highly acidic, alkaline, hydrophobic, or oxidizing environments as well as stable to high temperature and immune to toxic substrates in the processing stream will play an important role. Techniques for immobilization of the biomaterials have played a significant role in the biosensor field. Immobilization not only brings about the intimate contact of the biologic catalysts with the transducer, but also helps in the stabilization of the biologic system, thus enhancing its operational and storage stability. A number of techniques have been developed in our laboratory for the immobilization of enzymes, multienzyme systems, cells, and enzymecell conjugates. Some of these aspects that are of significance in biosensor applications have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mulchandani, A. and Rogers, K. R., eds. (1998), Enzyme and Microbial Biosensors: Techniques and Protocols, Humana, Totowa, NJ.

    Google Scholar 

  2. Ramsay, G., ed. (1998), Commercial Biosensors: Applications to Clinical, Bioprocess and Environmental Samples, John Wiley & Sons, London.

    Google Scholar 

  3. Nikolelis, D., Krull, U., Wang, J., and Mascini, M., eds. (1998), Biosensors for Direct Monitoring of Environmental Pollutants in Field, Kluwer Academic, London.

    Google Scholar 

  4. Rogers, K. R. and Gerlach, C. L. (1996), Environ. Sci. Technol. 30, 486A-491A.

    CAS  Google Scholar 

  5. Marty, J.-L., Olive, D., and Asano, Y. (1997), Environ. Technol. 18, 333–337.

    CAS  Google Scholar 

  6. Bart, J. C., Judd, L. L., Hoffman, K. E., Wilkins, A. M., and Kusterbeck, A. W. (1997), Environ. Sci. Technol. 31, 1505–1511.

    Article  CAS  Google Scholar 

  7. Trojanowicz, M. and Hitchman, M. L. (1996), Trends Anal. Chem. 15, 38–45.

    CAS  Google Scholar 

  8. Blum, L. J. and Coulet, P. R., eds. (1991), Biosensor Principles and Applications. Marcel Dekker, NY.

    Google Scholar 

  9. Rella, R., Ferrara, D., Barison, G., Doretti, L., and Lora, S. (1996), Biotechnol. Appl. Biochem. 24, 83–88.

    CAS  Google Scholar 

  10. Daniel, R. M. (1996), Enzyme Microb. Technol. 19, 74–79.

    Article  CAS  Google Scholar 

  11. Arnold, F. H. (1998), Proc. Natl. Acad. Sci. USA 95, 2035,2036.

    Article  PubMed  CAS  ADS  Google Scholar 

  12. Brenchley, J. E. (1996), J. Ind. Microbiol. Biotechnol. 17, 432–437.

    Article  CAS  Google Scholar 

  13. Nandakumar, R. and Mattiasson, B. (1999), Biotechnol. Techniques 13, 689–693.

    Article  CAS  Google Scholar 

  14. Daniel, R. M., Bragger, J. M., and Morgan, H. W. (1990), in Biocatalysis, Abvamowicz, D. A., ed., Van Nostrand Reinhold, NY, pp. 243–254.

    Google Scholar 

  15. Srinivasan, M. C. (1994), Curr. Sci. 66, 137–140.

    Google Scholar 

  16. Janson, J.-C. and Ryden, L., eds. (1998), Protein Purification. Principles, High Resolution Methods, and Applications, Wiley-Liss, NY.

    Google Scholar 

  17. Hatti-Kaul, R., ed. (2000), Aqueous Two-Phase Systems: Methods and Protocols. Humana, Totowa, NJ.

    Google Scholar 

  18. Deshpande, A., Sankaran, K., D’Souza, S. F., and Nadkarni, G. B. (1987), Biotechnol. Techniques 1, 55–58.

    Article  CAS  Google Scholar 

  19. D’Souza, S. F. (1989), Indian J. Microbiol. 29, 83–117.

    Google Scholar 

  20. Bickerstaff, G. F., ed. (1997), Immobilization of Enzymes and Cells, Humana, Totowa, NJ.

    Google Scholar 

  21. D’Souza, S. F. (1999), in Advances in Bioprocessing and r-DNA Technology, Bihari, V. and Agarwal, S. C., eds., Modern Printers, Lucknow, India, pp. 107–125.

    Google Scholar 

  22. Godbole, S. S., Kaul, R., D’Souza, S. F., and Nadkarni, G. B. (1983), Biotechnol. Bioeng. 25, 217–224.

    Article  CAS  Google Scholar 

  23. D’Souza, S. F. and Nadkarni, G. B. (1980), Biotechnol. Bioeng. 22, 2191–2205.

    Article  CAS  Google Scholar 

  24. D’Souza, S. F. and Nadkarni, G. B. (1980), Enzyme Microb. Technol. 2, 217–222.

    Article  CAS  Google Scholar 

  25. Godbole, S. S., D’Souza, S. F., and Nadkarni, G. B. (1980), Enzyme Microb. Technol. 2, 223–226.

    Article  CAS  Google Scholar 

  26. Deshpande, A., D’Souza, S. F., and Nadkarni, G. B. (1987), J. Biosci. 11, 137–144.

    CAS  Google Scholar 

  27. Patil, A. and D’Souza, S. F. (1997), J. Gen. Appl. Microbiol. 43, 163–167.

    PubMed  CAS  Google Scholar 

  28. Kamath, N. and D’Souza, S. F. (1992), Enzyme Microb. Technol. 13, 935–938.

    Article  Google Scholar 

  29. Katrlik, J., Svorc, J., Rosenberg, M., and Miertus, S. (1996), Anal. Chim. Acta 331, 225–232.

    Article  CAS  Google Scholar 

  30. Corbisier, P., Thiry, E., and Diels, L. (1996), Environ. Toxicol. Water Qual. 11, 171–177.

    Article  CAS  ADS  Google Scholar 

  31. Gu, M. B. and Dhurjati, P. S. (1996), Biotechnol. Prog. 12, 393–397.

    Article  PubMed  CAS  Google Scholar 

  32. Svitel, J., Curilla, O., and Tkac, J. (1998), Biotechnol. Appl. Biochem. 27, 153–158.

    PubMed  CAS  Google Scholar 

  33. D’Souza, S. F. and Melo, J. S. (1991), Enzyme Microb. Technol. 13, 508–511.

    Article  PubMed  CAS  Google Scholar 

  34. Kaul, R., D’Souza, S. F., and Nadkarni, G. B. (1986), J. Microb. Biotechnol. 1, 12–19.

    CAS  Google Scholar 

  35. Mazzei, F., Botre, F., Lorenti, G., Simonetti, G., Porcelli, F., Scibona, G., and Botre, C. (1995), Anal. Chim. Acta 316, 79–82.

    Article  CAS  Google Scholar 

  36. Skladal, P. (1997), Electroanalysis 9, 737–744.

    Article  CAS  Google Scholar 

  37. Rogers, K. R. and Mulchandani, A. (1998), Affinity Biosensors: Techniques and Protocols, Humana, Totowa, NJ.

    Google Scholar 

  38. Fojta, M. and Palecek, E. (1997), Anal. Chim. Acta 342, 1–12.

    Article  CAS  Google Scholar 

  39. Cheng, J., Sheldon, E. L., Wu, L., Uribe, A., Gerrue, L. O., Carrino, J., Heller, M., and O’Connell, O. (1998), Nat. Biotechnol. 16, 541–546.

    Article  PubMed  CAS  Google Scholar 

  40. D’Souza, S. F. (1998), Curr. Sci. 77, 69–79.

    Google Scholar 

  41. Bonnington, L. S., Henderson, W., and Petach, H. H. (1995), Enzyme Microb. Technol. 17, 746–750.

    Article  CAS  Google Scholar 

  42. Melo, J. S. and D’Souza, S. F. (1992), Appl. Biochem. Biotechnol. 32, 159–170.

    PubMed  CAS  Google Scholar 

  43. Husain, S. and Jafri, F. (1995), Biochem. Mol. Biol. Int. 36, 669–677.

    PubMed  CAS  Google Scholar 

  44. Das, N., Prabhakar, P., Kayastha, A. M., and Srivastava, R. C. (1997), Biotechnol. Bioeng. 54, 329–332.

    Article  CAS  Google Scholar 

  45. SivaRaman, H., Seetarama Rao, B., Pundle, A. V., and SivaRaman, C. (1982), Biotechnol. Lett. 4, 359–364.

    Article  CAS  Google Scholar 

  46. D’Souza, S. F. and Godbole, S. S. (1989), Biotechnol. Lett. 11, 211,212.

    Article  CAS  Google Scholar 

  47. Rao, B. Y. K., Godbole, S. S., and D’Souza, S. F. (1988), Biotechnol. Lett. 10, 427–430.

    Article  CAS  Google Scholar 

  48. Joshi, N. T. and D’Souza, S. F. (1999), J. Environ. Sci. Health A 34, 1689–1700.

    Google Scholar 

  49. Uhlich, T., Ulbricht, M., and Tomaschewski, G. (1996), Enzyme Microb. Technol. 19, 124–131.

    Article  CAS  Google Scholar 

  50. Araujo, A. M., Neves, M. T., Jr., Azevedo, W. M., Oliveira, G. G., Ferreira, Jr., D. L., Coelho, R. A. L., Figueiredo, E. P. A., and Carvalho, L. B., Jr. (1997), Biotechnol. Techniques 11, 67–70.

    Article  CAS  Google Scholar 

  51. Walcerz, I., Koncki, R., Leszczynska, E., Salamonowicz, B., and Glab, S. (1996), Anal. Lett. 29, 1939–1953.

    CAS  Google Scholar 

  52. Ulbricht, M. and Papra, A. (1997), Enzyme Microb. Technol. 20, 61–68.

    Article  CAS  Google Scholar 

  53. D’Urso, E. M. and Fortier, G. (1996), Enzyme Microb. Technol. 18, 482–488.

    Article  CAS  Google Scholar 

  54. Sung, W. J. and Bae, Y. H. (2000), Anal. Chem. 72, 2177–2181.

    Article  PubMed  CAS  Google Scholar 

  55. Mattiasson, B. (1982), Appl. Biochem. Biotechnol. 7, 121–125.

    CAS  Google Scholar 

  56. D’Souza, S. F. and Deshpande, A. (2000), Appl. Biochem. Biotechnol., in press.

  57. Nakas, J. P. and Slomczynski, D. J. (1996), Anal. Lett. 29, 1907–1919.

    Google Scholar 

  58. Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991), Science 251, 767–773.

    Article  PubMed  CAS  ADS  Google Scholar 

  59. Kleinfeld, D., Kahler, K. H., and Hockberger, P. E. (1988), J. Neurosci. 8, 4098–4120.

    PubMed  CAS  Google Scholar 

  60. Ahluwalia, A., De Rossi, D., and Schirone A. (1992), Thin Solid Films 210/211, 726–729.

    Article  Google Scholar 

  61. Godbole, S. S., D’Souza, S. F., and Nadkarni, G. B. (1983), Enzyme Microb. Technol. 5, 125–128.

    Article  CAS  Google Scholar 

  62. Smidsord, O. and Skjak-Braek, G. (1990), Trends Biotechnol. 8, 71–78.

    Article  Google Scholar 

  63. Gupte, A. and D’Souza, S. F. (1999), J. Biochem. Biophys. Methods 40, 39–44.

    Article  PubMed  CAS  Google Scholar 

  64. D’Souza, S. F. and Nadkarni, G. B. (1981), Biotechnol. Bioeng. 23, 431–436.

    Article  CAS  Google Scholar 

  65. D’Souza, S. F., Kaul, R., and Nadkarni, G. B. (1985), Biotechnol. Lett. 7, 589–592.

    Article  CAS  Google Scholar 

  66. Marolia, K. Z. and D’Souza, S. F. (1994), J. Food Sci. Technol. 31, 153–155.

    CAS  Google Scholar 

  67. Kaul, R., D’Souza, S. F., and Nadkarni, G. B. (1983), Biotechnol. Bioeng. 25, 887–889.

    Article  CAS  Google Scholar 

  68. Marolia, K. Z. and D’Souza, S. F. (1999), J. Biochem. Biophys. Methods 39, 115–117.

    Article  PubMed  CAS  Google Scholar 

  69. Deshpande, A., D’Souza, S. F., and Nadkarni, G. B. (1986), Indian J. Biochem. Biophys. 23, 353,354.

    PubMed  CAS  Google Scholar 

  70. D’Souza, S. F. (1990), Food Biotechnol. 4, 373–382.

    Google Scholar 

  71. Tomalia, D. A. and Killat G. R. (1988), in Encyclopedia of Polymer Science and Engineering, vol. 1, 2nd ed., Mark, H. F., Overberger, C. G., Bikales, N. M., and Menges, G., eds., Wiley Interscience, NY, pp. 680–739.

    Google Scholar 

  72. D’Souza, S. F., Melo, J. S., Deshpande, A., and Nadkarni, G. B. (1986), Biotechnol. Lett. 8, 643–648.

    Article  CAS  Google Scholar 

  73. D’Souza, S. F. and Kamath, N. (1988), Appl. Microbiol. Biotechnol. 29, 136–140.

    Article  CAS  Google Scholar 

  74. Kamath, N., Melo, J. S., and D’Souza, S. F. (1991), Trends Biomater. Artif. Organs 5, 67–71.

    Google Scholar 

  75. Godbole, S. S., Kubal, B. S., and D’Souza, S. F. (1990), Enzyme Microb. Technol. 12, 214–217.

    Article  PubMed  CAS  Google Scholar 

  76. Sankaran, K., Godbole, S. S., and D’Souza, S. F. (1989), Enzyme Microb. Technol. 11, 617–619.

    Article  CAS  Google Scholar 

  77. Kamath, N., Melo, J. S., and D’Souza, S. F. (1988), Appl. Biochem. Biotechnol. 19, 251–258.

    Article  CAS  Google Scholar 

  78. Kumar, S. D., Kulkarni, A. V., Dhaneshwar, R. G., and D’Souza, S. F. (1992), Bioelectrochem. Bioenergetics 27, 153–160.

    Article  Google Scholar 

  79. Kumar, S. D., Kulkarni, A. V., Dhaneshwar, R. G., and D’Souza, S. F. (1994), Bioelectrochem. Bioenergetics 34, 195–198.

    Article  CAS  Google Scholar 

  80. Melo, J. S., Kubal, B. S., and D’Souza, S. F. (1992), Food Biotechnol. 6, 175–186.

    CAS  Google Scholar 

  81. Melo, J. S. and D’Souza, S. F. (1999), World J. Microbiol. Biotechnol. 15, 25–27.

    Article  Google Scholar 

  82. Marshall, R. C., ed. (1984), Microbial Adhesion and Aggregation, Springer-Verlag, NY.

    Google Scholar 

  83. Guilbault, G. G. (1989), Biotechnology 7, 349–351.

    Article  CAS  Google Scholar 

  84. Dominguez, E., Lan, H. L., Okamoto, Y., Hale, P. D., Skotheim, T. A., Gorton, L., and Hahn-Hagerdal, B. (1993), Biosens. Bioelectron. 8, 229–237.

    Article  CAS  Google Scholar 

  85. Nandakumar, R. and Mattiasson, B. (1999), Anal. Lett. 32, 2379–2393.

    CAS  Google Scholar 

  86. Blanco, R. M., Calvete, J. J., and Guisan, J. M. (1988), Enzyme Microb. Technol. 11, 353–359.

    Article  Google Scholar 

  87. Tyagi, R., Batra, R., and Gupta, M. N. (1999), Enzyme Microb. Technol. 24, 348–354.

    Article  CAS  Google Scholar 

  88. Ryan, O., Smyth, M. R., and O’Fagain, C. (1994), Enzyme Microb. Technol. 16, 501–505.

    Article  PubMed  CAS  Google Scholar 

  89. Miland, E., Smyth, M. R., and O’Fagain, C. (1996), Enzyme Microb. Technol. 18, 63–67.

    Article  Google Scholar 

  90. Tanaka, A. and Kawamoto, T. (1991), in Protein Immobilization, Taylor, R. F., ed., Marcel Dekker, NY, pp. 183–208.

    Google Scholar 

  91. Dordick, J. S. (1989), Enzyme Microb. Technol. 11, 194–211.

    Article  CAS  Google Scholar 

  92. St. Clair, N. L. and Navia, M. A. (1992), J. Am. Chem. Soc. 114, 7314–7316.

    Article  CAS  Google Scholar 

  93. D’Souza, S. F. (1983), Biotechnol. Bioeng. 25, 1661–1664.

    Article  CAS  Google Scholar 

  94. D’Souza, S. E., Altekar, W., and D’Souza, S. F. (1992), J. Biochem. Biophys. Methods 24, 239–247.

    Article  PubMed  CAS  Google Scholar 

  95. D’Souza, S. E., Altekar, W., and D’Souza, S. F. (1997), World J. Microbiol. Biotechnol. 13, 561–564.

    Article  CAS  Google Scholar 

  96. D’Souza, S. F. and Marolia, K. Z. (1999), Biotechnol. Techniques 13, 375–378.

    Article  CAS  Google Scholar 

  97. Schomburg, D. (1990), Food Biotechnol. 4, 329–336.

    Article  CAS  Google Scholar 

  98. Benkovic, S. J. (1992), Annu. Rev. Biochem. 61, 29–54.

    Article  PubMed  CAS  Google Scholar 

  99. Huang, X. L., Walsh, M. K., and Swaisgood, H. E. (1996), Enzyme Microb. Technol. 19, 378–383.

    Article  CAS  Google Scholar 

  100. Koyano, T., Saito, M., Miyamato, Y., Kaifu, K., and Kato, M. (1996), Biotechnol. Prog. 12, 141–144.

    Article  CAS  Google Scholar 

  101. Murai, T., Ueda, M., Atomi, H., Shibasaki, Y., Kamsava, N., Osumi, N., Kawaguchi, T., Arai, M., and Tanaka, A. (1997), Appl. Microbiol. Biotechnol. 48, 499–503.

    Article  PubMed  CAS  Google Scholar 

  102. Mulchandani, A., Mulchandani, P., Kaneva, I., and Chen, W. (1998), Anal. Chem. 70, 4140–4145.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. D’Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Souza, S.F. Immobilization and stabilization of biomaterials for biosensor applications. Appl Biochem Biotechnol 96, 225–238 (2001). https://doi.org/10.1385/ABAB:96:1-3:225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:96:1-3:225

Index Entries

Navigation