Skip to main content
Log in

Cooperativity and substrate specificity of an alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The saccharifying alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1 hydrolyzes both α-(1,4)- and α-(1,6)-glycosidic linkages of different linear and branched polysaccharides. The following observations were made concerning the analysis of the coexpressed amylase and neopullulanase enzymes. Even though the enzymes were subjected to a rigorous purification protocol, the activities could not be separated, because both the enzymes were found to migrate in a single peak. By contrast, two independent bands of amylolytic activity at 70 kDa and pullulanolytic activity at 53 kDa were evident by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), reducing and nonreducing PAGE, and zymographic analysis on different polysaccharides. Preferential chemical modification of the enzyme and concomitant high-performance thin-layer chromatographic analyses of the saccharides liberated showed that amylase is sensitive to 1-(dimethylamino-propyl)-3-ethyl carbodiimide-HCl and cleaved α-(1,4) linkages of starch, amylose, and amylopectin producing predominantly maltotriose. On the other hand, formalin-sensitive neopullulanase acts on both α-(1,4) and α-(1,6) linkages of pullulan and starch with maltotriose and panose as major products. It is understood that neopullulanase exhibits dual activity and acts in synergy with amylase toward the hydrolysis of α-(1,4) linkages, thereby increasing the overall reaction rate; however, such a synergism is not seen in zymograms, in which the enzymes are physically separated during electrophoresis. It is presumed that SDS-protein intercalation dissociated the enzyme complex, without altering the individual active site architecture, with only the synergism lost. The optimum temperature and pH of amylase and neopullulanase were 60°C and 8.0, respectively. The enzymes were found stable in high alkaline pH for 24 h. Therefore, the saccharifying alkaline amylase and neopullulanase of M. halobius OR-1 evolved from tapioca cultivar shows a highly active and unique enzyme complex with several valuable biochemical features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Juge, N., Svensson, B., and Willianson, G. (1998), Appl. Microbiol. Biotechnol. 49, 385–392.

    Article  CAS  Google Scholar 

  2. Cornelis, P. (1987), Microbiol. Sci. 4, 342, 343.

    CAS  Google Scholar 

  3. Norman, B. E. (1982), Starch-Starke 10, 340–346.

    Article  Google Scholar 

  4. Plant, A. R., Clemend, R. M., Morgan, H. W., and Daniel, R. M. (1987), Biochem. J. 246, 537–541.

    CAS  Google Scholar 

  5. Kim, C. H. (1994), FEMS Microbiol. Lett. 116, 327–332.

    Article  CAS  Google Scholar 

  6. Lee, Y. E., Jain, M. K., Lee, C., Lowe, S. E., and Zeikus, J. G. (1993), Int. J. Syst. Bacteriol. 43, 41–51.

    Article  Google Scholar 

  7. Mathubala, S. P., Lowe, S. E., Podkovyrov, S. M., and Zeikus, J. G. (1993), J. Biol. Chem. 268, 16,332–16,344.

    Google Scholar 

  8. Sata, H., Umeda, M., Kim, C. H., Taniguchi, H., and Maruyama, Y. (1989), Biochim. Biophys. Acta 991, 388–394.

    CAS  Google Scholar 

  9. Kuriki, T., Okada, S., and Imanaka, T. (1988), J. Bacteriol. 170, 1554–1559.

    CAS  Google Scholar 

  10. Imanaka, T. and Kuriki, T. (1989), J. Bacteriol. 171, 369–374.

    CAS  Google Scholar 

  11. Lee, C., Saha, B. C., and Zeikus, J. G. (1990), Appl. Environ. Microbiol. 56, 2895–2901.

    CAS  Google Scholar 

  12. RajDevi, K. P. and Yogeeswaran, G. (1999), World J. Microbiol. Biotechnol. 15(2), 223–227.

    Article  Google Scholar 

  13. Somogyi, M. (1952), J. Biol. Chem. 195, 19–23.

    CAS  Google Scholar 

  14. Bradford, M. M. (1976), Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  15. Rylatt, D. B. and Parish, C. R. (1982), Anal. Biochem. 121, 213, 214.

    Article  CAS  Google Scholar 

  16. Gupta, K. C., Sahni, M. K., and Rathore, B. S. (1989), J. Chromatogr. 169, 183.

    Article  Google Scholar 

  17. Sundberg, L. and Porath, J. (1974), J. Chromatogr. 40, 87–98.

    Article  Google Scholar 

  18. Laemmli, U. K. (1970), Nature 227, 680–685.

    Article  CAS  Google Scholar 

  19. Fairbanks, G., Steck, T. L., and Wallach, D. F. H. (1971), Biochemistry 10, 2606–2617.

    Article  CAS  Google Scholar 

  20. Mathubala, P. S. and Zeikus, J. G. (1993), Appl. Microbiol. Biotechnol. 487–493.

  21. Carraway, K. L. and Koshland, D. E. (1972), Methods Enzymol. 25, 616–623.

    CAS  Google Scholar 

  22. Boopathy, R. and Balasubramanian, A. S. (1985), Eur. J. Biochem. 151, 351–360.

    Article  CAS  Google Scholar 

  23. Itkor, P., Tsukagoshi, N., and Udaka, S. (1989), J. Ferment. Bioeng. 68, 247–251.

    Article  CAS  Google Scholar 

  24. Ara, K., Igarashi, K., Saeki, K., and Ito, S. (1995), Biosci. Biotechnol. Biochem. 59, 662–666.

    Article  CAS  Google Scholar 

  25. Bender, H. and Wallenfels, K. (1966), Methods Enzymol. 8, 555–562.

    Article  CAS  Google Scholar 

  26. Takata, H., Kuriki, T., Okada, S., Takesada, Y., Iizuka, M., Minamiura, N., and Imanaka, T. (1992), J. Biol. Chem. 267, 18,447–18,452.

    CAS  Google Scholar 

  27. Kim, C. H., Choi, H. I., and Lee, D. S. (1993) J. Ind. Microbiol. 12, 48–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesa Yogeeswaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajdevi, K.P., Yogeeswaran, G. Cooperativity and substrate specificity of an alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1 . Appl Biochem Biotechnol 90, 233–249 (2001). https://doi.org/10.1385/ABAB:90:3:233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:90:3:233

Index Entries

Navigation