Skip to main content
Log in

Amiodarone interactions with membrane lipids and with growth of Bacillus stearothermophilus used as a model

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The thermophilic eubacterium Bacillus stearothermophilus was used as a model to study the effects of amiodarone (2-butyl-3-[3′,5′diido-4′α-diethyl-aminoethoxybenzoyl]-benzofuran) in lipid organization and in bacterial growth. Effects on the structural order of lipids were assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), probing the bilayer core, and of the propionic acid derivative 3-[p-(6-phenyl)-1,3,5-hexatrienyl] phenylpropionic acid (DPH-PA), probing the outer regions of the bilayer. Amiodarone fluidizes bacterial polar lipid bilayers for temperatures below the phase transition midpoint, and orders the fluid phase of the bacterial polar lipids, as evaluated by DPH and DPH-PA. The ordering and disordering effects, which are concentration dependent, are more extensive when detected by DPH relative to DPH-PA. Growth studies performed in parallel revealed that amiodarone inhibits bacterial growth as a function of concentration. Amiodarone concentrations in the range from 1 to 2.5 µM increased the lag time, decreased the specific growth rate, and decreased the final cell density. Furthermore, 3 µM amiodarone completely inhibited growth. These in vivo effects of amiodarone can be related to its ability to perturb the phospholipid bilayer structure, whose integrity is essential for cell function, viability, and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenbourn, M. B., Chiale, P. A., Halpern, M. S., Nau, G. J., Przybylzky, J., Levi, R. J., Lazzari, J. O., and Elizari, M. V. (1976), Am. J. Cardiol. 38, 934–944.

    Article  Google Scholar 

  2. Gill, J., Heel, R. C., and Fitton, A. (1992), Drugs 43, 69–110.

    CAS  Google Scholar 

  3. Jendrasiak, G. L., McIntosh, T. J., Ribeiro, A., and Porter, R. S. (1990), Biochim. Biophys. Acta 1024, 19–31.

    Article  CAS  Google Scholar 

  4. Trumbore, M., Chester, D. W., Moring, J., Rhodes, D., and Herbette, L. G. (1988), Biophys. J. 54, 535–543.

    CAS  Google Scholar 

  5. Chatelain, P., Ferreira, J., Laruel, R., and Ruysschaert, J. M. (1986), Biochem. Pharmacol. 35, 3007–3013.

    Article  CAS  Google Scholar 

  6. Chatelain P., Brottelle, R., and Laruel, R. (1987), Biochem. Pharmacol. 36, 1564, 1565.

    Article  CAS  Google Scholar 

  7. Sautereau, A.-M., Tournaire, C., Suares, M., Tocanne, J. F., and Paillous, N. (1992), Biochem. Pharmacol. 43, 2559–2566.

    Article  CAS  Google Scholar 

  8. Antunes-Madeira, M. C., Videira, R. A., Klüppel, M. L. W., and Madeira, V. M. C. (1995), Int. J. Cardiol. 48, 211–218.

    Article  CAS  Google Scholar 

  9. Attal, Y., Cao, X. A., Perret, G., and Taillandier, E. (1997), Chem. Pharm. Bull. 45, 1317–1322.

    CAS  Google Scholar 

  10. Chatelain, P., Laruel, R., and Gillard, M. (1985), Biochem. Biophys. Res. Commun. 129, 148–154.

    Article  CAS  Google Scholar 

  11. Chatelain, P., Laruel, R., Vic, P., and Brotelle, R. (1989), Biochem. Pharmacol. 38, 1231–1239.

    Article  CAS  Google Scholar 

  12. Nishimura, M., Follmer, C. H., and Singer, D. H. (1989), J. Pharmacol. Exp. Ther. 251, 650–659.

    CAS  Google Scholar 

  13. Fromenty, B., Fish, C., Berson, A., Letteron, P., Larrey, D., and Pessayre, D. (1990), J. Pharmacol. Exp. Ther. 255, 1377–1384.

    CAS  Google Scholar 

  14. Watanase, Y., Hara, Y., Tamagawa, M., and Nakaya, H. (1996), J. Pharmacol. Exp. Ther. 279, 617–624.

    Google Scholar 

  15. Card, J. W., Lalonde, B. L., Rafeiro, F., Tam, A. S., Racs, W. J., Brien, J. F., Bray, T. M., and Massey, T. E. (1998), Toxicol. Lett. 98, 41–50.

    Article  CAS  Google Scholar 

  16. Gray, D. F., Mihailidon, A. S., Hansen, P. S., Buhagiar, K. A., Bewick, N. L., Rasmussen, H. H., and Wholley, D. W. (1998), J. Pharmacol. Exp. Ther. 284, 75–82.

    CAS  Google Scholar 

  17. Silva, M. T., Sousa, J. C. F., Polónia, J. J., and Macedo, P. M. (1979), Y. Bacteriol. 137, 461–468.

    CAS  Google Scholar 

  18. Sikkema, J., Poolman, B., Konings, W. N., and De Bont, J. A. M. (1992), J. Bacteriol. 174, 2986–2992.

    CAS  Google Scholar 

  19. Sikkema, J., De Bont, J. A. M., and Poolman, B. (1995), Microbiol. Rev. 59, 201–222.

    CAS  Google Scholar 

  20. Luxo, C., Jurado, A. S., Custódio, J. B. A., and Madeira, V. M. C. (1996), Toxicol. Vitro 10, 463–471.

    Article  CAS  Google Scholar 

  21. Luxo, C., Jurado, A. S., and Madeira, V. M. C. (1998), Biochim. Biophys. Acta 1369, 71–84.

    Article  CAS  Google Scholar 

  22. Donato, M. M., Jurado, A. S., Antunes-Madeira, M. C., and Madeira, V. M. C. (1997), Arch. Environ. Contam. Toxicol. 33, 109–116.

    Article  CAS  Google Scholar 

  23. Donato, M. M., Jurado, A. S., Antunes-Madeira, M. C., and Madeira, V. M. C. (1997), Arch. Environ. Contam. Toxicol. 33, 341–349.

    Article  CAS  Google Scholar 

  24. Donato, M. M., Jurado, A. S., Antunes-Madeira, M. C., and Madeira, V. M. C. (1997), Appl. Environ. Microbiol. 63, 4948–4951.

    CAS  Google Scholar 

  25. Kaback, H. R. (1972), Biochim. Biophys. Acta 265, 367–416.

    CAS  Google Scholar 

  26. Booth, I. R. (1985), Microbiol. Rev. 49, 359–378.

    CAS  Google Scholar 

  27. Stock, J. B., Stock, A. M., and Mottonen, J. M. (1990), Nature 344, 395–400.

    Article  CAS  Google Scholar 

  28. Trumpower, B. L. and Gennis, R. B. (1994), Annu. Rev. Biochem. 63, 675–716.

    CAS  Google Scholar 

  29. Jurado, A. S., Santana, A. C., Costa, M. S., and Madeira, V. M. C. (1987), J. Gen. Microbiol. 133, 507–513.

    CAS  Google Scholar 

  30. Bligh, E. G. and Dyer, W. J. (1959), Can. J. Biochem. Physiol. 37, 911–937.

    CAS  Google Scholar 

  31. Bartlett, G. R. (1959), J. Biol. Chem. 234, 466–468.

    CAS  Google Scholar 

  32. Böttcher, C. J. F., Van Gent, C. M., and Pries, C. (1961), Anal. Chim. Acta 24, 203, 204.

    Article  Google Scholar 

  33. Shinitzky, M. and Barenholz, Y. (1978), Biochim. Biophys. Acta 515, 367–394.

    CAS  Google Scholar 

  34. Litman, B. J. and Barenholz, Y. (1982), Methods Enzymol. 81, 678–685.

    Article  CAS  Google Scholar 

  35. Trotter, P. J. and Storch, J. (1989), Biochim. Biophys. Acta 982, 131–139.

    Article  CAS  Google Scholar 

  36. Jurado, A. S., Pinheiro, T. J. T., and Madeira, V. M. C. (1991), Arch. Biochem. Biophys. 289, 167–179.

    Article  CAS  Google Scholar 

  37. Chefurka, W., Chatelier, R. C., and Sawer, W. H. (1987), Biochim. Biophys. Acta 896, 181–186.

    Article  CAS  Google Scholar 

  38. Ferreira, J., Chatelain, P., Caspers, J., and Ruysschaert, J. M. (1987), Biochem. Pharmacol. 36, 4245–4250.

    Article  CAS  Google Scholar 

  39. Jain, M. K. and Wu, N. M. (1977), J. Membr. Biol. 34, 157–201.

    Article  CAS  Google Scholar 

  40. Cevc, G. (1987), Biochemistry 26, 6305–6310.

    Article  CAS  Google Scholar 

  41. Mouritsen, O. G. and Jörgensen, K. (1994), Chem. Phys. Lipids 73, 3–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vítor V. M. C. Madeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, S.M.L.J., Antunes-Madeira, M.C., Jurado, A.S. et al. Amiodarone interactions with membrane lipids and with growth of Bacillus stearothermophilus used as a model. Appl Biochem Biotechnol 87, 165–175 (2000). https://doi.org/10.1385/ABAB:87:3:165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:87:3:165

Index Entries

Navigation