Skip to main content
Log in

Nucleophilic proteolytic antibodies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Proteolytic antibodies appear to utilizecatalytic mechanisms akin to nonantibody serine proteases, assessed from mutagenesis and protease-inhibitor studies. The catalytic efficiency derives substantially from the ability to recognize the ground state with high affinity. Because the proteolytic activity is germline-encoded, catalysts with specificity for virtually any target polypeptide could potentially be developed by applying appropriate immunogens and selection strategies. Analysis of transition-state stabilizing interactions suggests that chemical reactivity ofactive-site serine residues is an important contributor to catalysis. A prototype antigen analog capable of reacting covalently with nucleophilic serine residues permitted enrichment of the catalysts from a phage-displayed lupus light-chain library. Further mechanistic developments in understanding proteolytic antibodies may lead to the isolation of catalysts suitable for passive immunotherapy of major diseases, and elicitation of catalytic immunity as a component of prophylactic vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paul, S., Sun, M., Mody, R., Eklund, S. H., Beach, C. M., Massey, R. J., and Hamel, F. (1991), J. Biol. Chem. 256, 16,128–16,134.

    Google Scholar 

  2. Gao, Q-S., Sun, M., Tyutyulkova, S., Webster, D., Rees, A., Tramontano, A., Massey, R., and Paul, S. (1994), J. Biol. Chem. 269, 32,389–32,393.

    CAS  Google Scholar 

  3. Gao, Q-S., Sun, M., Rees, A., and Paul, S. (1995), J. Mol. Biol. 253, 658–664.

    Article  PubMed  CAS  Google Scholar 

  4. Sun, M., Li, L., Gao, Q-S., and Paul, S. (1994), J. Biol. Chem. 269, 734–738.

    PubMed  CAS  Google Scholar 

  5. Sun, M., Gao, Q-S., Li, L., and Paul, S. (1994), J. Immunol. 153, 5121–5126.

    PubMed  CAS  Google Scholar 

  6. Hifumi, E., Okamoto, Y., and Uda, T. (1999), J. Biosci. Bioengin. 88, 323–327.

    Article  CAS  Google Scholar 

  7. Hifumi, E., Okamoto, Y., and Uda, T. (2000), How and why 41S-2 antibody subunits acquire the ability to catalyze decomposition of the conserved sequence of gp41 of HIV-1. Appl. Biochem. Biotechnol.

  8. Matsuura, K., Yamamoto, K., and Sinohara, H. (1994), Biochem. Biophys. Res. Commun. 204, 57–62.

    Article  PubMed  CAS  Google Scholar 

  9. McGrath, M. E., Vasquez, J. R., Craik, C. S., Yang, A. S., Honig, B., Fletterick, R. J. (1992), Biochemistry 31, 3059–3064.

    Article  PubMed  CAS  Google Scholar 

  10. Gololobov, G., Sun, M., and Paul, S. (1999), Mol. Immunol. In press.

  11. Rao, S. N., Singh, U. C., Bash, P. A., and Kollman, P. A. (1987), Nature 328, 551–554.

    Article  PubMed  CAS  ADS  Google Scholar 

  12. Tyutyulkova, S., Gao, Q-S., Thompson, A., Rennard, A., and Paul, S., (1996) Biophem. Biophys. Acta. 1316, 217–223.

    Google Scholar 

  13. Sun, M., Gao, Q-S., Kirnarskiy, L., Rees, A. and Paul, S. (1997), J. Mol. Biol. 271, 374–385.

    Article  PubMed  CAS  Google Scholar 

  14. Paul, S., Volle, D. J., Beach, C. M., Johnson, D. R., Powell, M. J., and Massey, R. J. (1989), Science, 244, 1158–1162.

    Article  PubMed  CAS  ADS  Google Scholar 

  15. Li, L., Kaveri, S., Tyutyulkova, S., Kazatchkine, M., and Paul, S. (1995), J. Immunol. 154, 3328–3332.

    PubMed  CAS  Google Scholar 

  16. Gololobov, G. V., Chernova, E. A., Schourov, D. V., Smirnov, I. V., Kudelina, I. A., and Gabibov, A. G. (1995), Proc. Natl. Acad. Sci. USA 92, 254–257.

    Article  PubMed  CAS  ADS  Google Scholar 

  17. Lacroix-Desmazes, S., Moreau, A., Sooryanarayana, Bonnemain, C., Stieltjes, N., Pashov, A., Sultan, Y., Hoebeke, J., Kazatchkine, M. D., and Kaveri, S. V. (1999), Nat. Med. 5, 1044–1047.

    Article  PubMed  CAS  Google Scholar 

  18. Fersht, A. (1984), Enzyme Structure and Mechanism (2nd ed.), New York: WH Freeman and Company, 1–475.

    Google Scholar 

  19. Goodnow, C. C., Adelstein, S., and Basten, A. (1990), Science 248, 1373–1379.

    Article  PubMed  CAS  ADS  Google Scholar 

  20. Nossal, G. J. V. (1995), Annu. Rev. Immunol. 13, 1–27.

    Article  PubMed  CAS  Google Scholar 

  21. Paul, S. (1996), Mol. Biotechnol. 5, 197–207.

    PubMed  CAS  Google Scholar 

  22. Warshel, A., Naray-Szabo, G., Sussman, F., Hwang, J. K. (1989), Biochemistry 28, 3629–3637.

    Article  PubMed  CAS  Google Scholar 

  23. Carter, P. and Wells, J. A. (1988), Nature 332, 564–568.

    Article  PubMed  CAS  ADS  Google Scholar 

  24. Sampson, N. S., and Bartlett, P. A. (1991), Biochemistry 30, 2255–2263.

    Article  PubMed  CAS  Google Scholar 

  25. Bryant, R., and Hansen, D. E. (1996), J. Am. Chem. Soc. 118, 5498–5499.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Gololobov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gololobov, G., Tramontano, A. & Paul, S. Nucleophilic proteolytic antibodies. Appl Biochem Biotechnol 83, 221–232 (2000). https://doi.org/10.1385/ABAB:83:1-3:221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:83:1-3:221

Index Entries

Navigation