Skip to main content
Log in

Superantibodies

Synergy of innate and acquired immunity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The antibody molecule possesses a number of so-called unconventional binding sites in the variable domain that are expressed and function independently from the antigen-binding site. These sites are encoded in the germiline, predominantly in framework residues. By this definition, these sites function as part of the innate immunity, and are not subject to antigendriven mutation and maturation. In this article, we focus on the evidence for the function and utility of the self-binding domain. The self-binding or autophilic domain has been discovered on murine germline-encoded antibodies from the S107/T15 Vh family. Autophilic antibodies form self-complexes after attaching to targets, but remain monomeric in solution. A peptide has been identified that confers self-binding if chemically attached to antibodies. Because this modification enhances the overall avidity of antibodies for target binding, therapeutic and diagnostic antibodies can be biotechnologically improved.

The concept of super antibodies is introduced here to describe the unique coexistence and synergism of acquired immunity with innate immunity via antigen-specific and unconventional functional domains. As not every antibody qualifies as a super antibody, biotechnology engineering can produce superantibodies with superior targeting and therapeutic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eldeman, G. M., Cunningham, B. A., Gall, W. E., Gottlieb, P. D., Rutishauser, U., and Wasdal, M. J. (1969) Proc. Nat. Acad. Sci. USA 63, 78–82.

    Article  ADS  Google Scholar 

  2. Fleischmann, J. B., Pain, R. H., and Porter, R. R. (1962), Arch. Biochem. Biophys. Suppl. 1, 174–192.

    Google Scholar 

  3. Hilschmann, N. and Craig, L. C. (1962) Proc. Natl. Acad. Sci. USA 53, 14013–1406.

    Google Scholar 

  4. Kohler, H., Shimizu, A., Paul, C., and Putnam, F. W. (1970), Nature 227, 1318–1321.

    Article  PubMed  CAS  ADS  Google Scholar 

  5. Kobat, E. A. and Wu, T. T. (1971), Ann. NY Acad. Sci. 190, 2019–2021.

    Google Scholar 

  6. Pojak, R. J., Amzel, L. N., Chen, B. L., Phizackerley, R. P., and Saul, F. (1974), Proc. Natl. Acad. Sci. USA 71, 3440–3444.

    Article  ADS  Google Scholar 

  7. Silverman, G. J. (1997), Immunol. Today 18, 379–386.

    Article  PubMed  CAS  Google Scholar 

  8. Silverman, G. J. (1997), Int. Rev. Immunol., 14, 259–290.

    PubMed  CAS  Google Scholar 

  9. Rajagopalan, K., Pavlinkova, G., Levy, S., Pokkuluri, P., Schiffer, M., Haley, B. E., and Kohler, H. (1996), Proc. Natl. Acad. Sci. USA 93, 6019–6024.

    Article  PubMed  CAS  ADS  Google Scholar 

  10. Kang, C-Y., Brunck, T. K., Kieber-Emmons, T., Blalock, J. E., and Kohler, H. (1988), Science 240, 1034–1036.

    Article  PubMed  CAS  ADS  Google Scholar 

  11. Paul, S., Volle, D. J., Beach, C. M., Johnson, D. R., Powell, M. J., and Massay, R. J. (1989), Science 244, 1158–1162.

    Article  PubMed  CAS  ADS  Google Scholar 

  12. Shoenfeld, Y. and George, J., (1997), Ann. NY Acad. Sci. 815, 342–349.

    Article  PubMed  CAS  Google Scholar 

  13. Kang, C-Y., Cheng, H-L., Rudikoff, S., and Kohler, H. (1987), J. Exp. Med. 165, 1332–1337.

    Article  PubMed  CAS  Google Scholar 

  14. Greenspan, N. S., Dacek, D. A., and Cooper, L. J., (1989), FASEB J. 10, 2203–2207.

    Google Scholar 

  15. Kang, C.-Y. and Kohler, H. (1986), J. Exp. Med. 163, 787–791.

    Article  PubMed  CAS  Google Scholar 

  16. Kaveri, S., Halpern, R., Kang, C-Y., and Kohler, H. (1991), Mol. Immunol. 2, 733–778.

    Google Scholar 

  17. Potter, M., and Leon, M. A. (1968), Science 162, 369–371.

    Article  PubMed  CAS  ADS  Google Scholar 

  18. Xiyun, Y., Evans, S. V., Kaminki, M. J., Gillies, S. D., Reisfeld, R. A., Noughton, A. N., and Chapman, P. B. (1996) J. Immunol. 157, 1582–1588.

    Google Scholar 

  19. Briles, D. E., Forman, S., Hudak, S., and Claflin, J. L. (1982), Eur. J. Immunol. 14, 1027–1030.

    Article  Google Scholar 

  20. Lim, P. L., Choy, W. F., Chan, S. T., and Ng, S. S. (1994), Infect. Immun. 62, 1658–1661.

    PubMed  CAS  Google Scholar 

  21. Lee, W., Cosenza, H., and Kohler, H. (1974), Nature 247, 55–57.

    Article  PubMed  CAS  ADS  Google Scholar 

  22. Rodwell, J. D., Alvarez V. L., Lee, C., Lopes, A. D., Goers, J. W., King, H. D., Powsner, H. J., and McKearn, T. J. (1986). Proc. Nat. Acad. Sci. USA 83, 2632–2636.

    Article  PubMed  CAS  ADS  Google Scholar 

  23. Pharm. Res. & Manufact. America, 1998 Biotechnology Survey.

  24. Tutt, A. L., French, R. R., Illidge, T. M., Honeychurch, J., McBride, H. M., Penfold, C. A., Fearon, D. T., Parkhouse, R. M. E., Klaus, G. G. B., and Glennie, M. J. (1998), J. Immunol. 161, 3176–3185.

    PubMed  CAS  Google Scholar 

  25. Kohler, H., and Paul, S. (1998), Immunol. Today 19, 221–227.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohler, H. Superantibodies. Appl Biochem Biotechnol 83, 1–12 (2000). https://doi.org/10.1385/ABAB:83:1-3:1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:83:1-3:1

Index Entries

Navigation