Skip to main content
Log in

Improving the catabolic functions of desiccation-tolerant soil bacteria

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial strains were selected from a desiccated polluted soil for their drought tolerance and their ability to grow on diesel oil in view of incorporating them in a bioaugmentation product. These products are useful in case of recal citrant xenobiotic pollution, where there is no intrinsic biodegradation activity in the soil. These strains grow on the easily degradable components of diesel oil. In troduction of new catabolic genes into these desiccation-tolerant bacteria in order to improve their catabolic functions was considered.

Plasmid-borne catabolic genes coding for enzymes in volved in the degradation of more recalcitrant compounds (Isopropylbenzene, trichloroethene, 3-chloroben zoate, 4-chlorobiphenyl, biphenyl) were successfully introduced in some of the desiccation-tolerant strains by means of natural conjugation. Strains exhibiting good tolerance to desiccation and able to grow on the new carbon sources were obtained. The frequencies of integration of the plasmids ranged from 2×10−8 to 9.2 10−2 transconjugants/acceptor.

Drought-tolerance is indeed important for bioaugmentation because of its in trinsic ecological significance and because a bioaugmentation starter has to be conditioned in a desic cated form to ensure good shelf-life. The conservation of the properties during storage was evaluated by accelerated storage tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Glass, D., Risto, T., and Van, Eijk J. (1995), Gen. Engineer. News 15(19), 6–9.

    Google Scholar 

  2. Weekers, F., Jacques, Ph., Springael, D., Mergeay, M., Diels, L., and Thonart Ph. (1998), Appl. Biochem. Biotech. 70–72, 311–322.

    Article  Google Scholar 

  3. Venosa, A. D., Haines, J. R., Nisamaneepong, W., Govind, R., Prahan, R., and Siddique B. (1992), J. Ind. Microbiol. 10, 13–23.

    Article  CAS  Google Scholar 

  4. Weekers, F., Jacques, Ph., Springael, D., Mergeay, M., Diels, L., and Thonart, Ph. (1996), Med. Fac. Landbouww. Univ. Gent, 61/4b, 2161–2164.

    Google Scholar 

  5. Marconi, A., Kieboom, J., and de Bont, J. (1997), Biotechnol. Lett. 19, 603–606.

    Article  CAS  Google Scholar 

  6. Ramos, J., Duque, E., Huertas, M.-J., and Haidour, A. (1995), J. Bacteriol. 177(14), 3911–3916.

    CAS  Google Scholar 

  7. Straube, G., Hensel, C., Niedan, C., and Straube, E. (1990), Anthonie Van Leeuwenhoek J. Microbiol. 57, 29–32.

    Article  CAS  Google Scholar 

  8. Ferguson, J. and Korte, F. (1981), Appl. Environ. Microbiol. 24, 7–15.

    Google Scholar 

  9. Behki, R., Top, E., Dick, W., and Germon, P. (1993), Appl. Environ. Microbiol. 59, 1955–1959.

    CAS  Google Scholar 

  10. Kobayashi, M., Nagasawa, T., and Yamadla, H. (1992), Trends Biotechnol. 10, 402–408.

    Article  CAS  Google Scholar 

  11. Sallis, P., Armfield, S., Bull, A., and Hardman, T. (1990), J. Gen. Microbiol. 136, 115–120.

    CAS  Google Scholar 

  12. Zyltra, G. and Gibson, D. (1991), in Genetic Engineering, vol. 13., Setler, J. K., ed., Plenum Press, NY, pp. 183–203.

    Google Scholar 

  13. Weekers, F., Jacques, Ph., Springael, D., Mergeay, M., Diels, L., and Thonart, Ph. (1997), in Proceedings of the “Workshop on Extremophiles,” Dec., 7–9, 1997, Mol Belgium.

  14. Mattimore, V. and Battista, J. R. (1996), J. Bacteriol. 178, 633–637.

    CAS  Google Scholar 

  15. Lang, E. and Malik, K. (1996), Biodegradation 7, 65–71.

    Article  CAS  Google Scholar 

  16. Sakane, T., Banno, I., and Iijima, T. (1983), IFO Res. Comm. 11, 14–24.

    Google Scholar 

  17. Simione, F. (1992), J. Parent. Sci. Technol. 46, 226–232.

    Google Scholar 

  18. De Valdez, G., and Diekman, H. (1993), Biology 30, 185–190.

    Google Scholar 

  19. Grieff, D. and Rightsel, W. (1965), J. Immunol. 98, 895–900.

    Google Scholar 

  20. Dabrock, B., Kesseler, M., Averhoff, B., and Gottschalk, G. (1994), Appl. Environ. Microbiol. 60(3), 853–860.

    CAS  Google Scholar 

  21. Springrel, D., Kreps, S., and Merglay, M. (1993), J. Bacteriol. 175, 1674–1681.

    Google Scholar 

  22. Figursky, D., Polhman, R., Bechhofer, D., Prince, A., and Kelton, C. (1982), Proc. Natl. Acad. Sci. USA 79, 1935–1939.

    Article  Google Scholar 

  23. Dawn, N. and Guuralus, C. (1973), J. Bacteriol. 114, 974–979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Weekers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weekers, F., Jacques, P., Springael, D. et al. Improving the catabolic functions of desiccation-tolerant soil bacteria. Appl Biochem Biotechnol 77, 251–266 (1999). https://doi.org/10.1385/ABAB:77:1-3:251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:77:1-3:251

Index Entries

Navigation