Skip to main content
Log in

Effect of thermosensitive matrix-phase transition on urease-catalyzed urea hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Temperature dependencies of kinetic and equilibrium parameters of urea hydrolysis catalyzed by native urease and the urease immobilized in a thermosensitive poly-N-isopropylacrylamide gel have been studied. The swelling ratio of the collapsed urease-containing gel is shown to increase in the presence of urea. Below a lower critical solution temperature (LCST) of the polymer, the immobilized u reaseactually has thesame catalytic properties as the native enzyme. At temperatures above LCST, the observed catalytic activity of the immobilized enzyme depends chiefly not only on the thermoreversible matrix state, but also on gel water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E a :

activation energy, kJ/mol

K m :

Michaelis constant, M

V :

reaction rate, mM/min

V max :

maximum reaction rate, mM/min

V max.opf :

maximum reaction rate in a pH optimum of enzyme activity, mM/min

T :

temperature, K

t :

temperatue, °C

([NH2)2CO):

urea concentration, M

References

  1. Hoffman, A. S. (1990), Polymerpreprints 31, pp. 220,221.

    Google Scholar 

  2. Ire, M. (1993), in Responsive Gels: Volume Transitions II, Dusek, K., ed., Springer-Verlag, Berlin, pp. 50–65.

    Google Scholar 

  3. Kokufuta, E. (1993), in Responsive Gels: Volume Transitions II, Dusek, K., ed., Springer-Verlag, Berlin, pp. 157–177.

    Chapter  Google Scholar 

  4. Galayev, I. Yu. (1994), Biochemistry (Moscow) 59, 1478–1482.

    Google Scholar 

  5. Tanaka, T. (1978), Phys. Rev. Lett. 40, 820–823.

    Article  CAS  Google Scholar 

  6. Bae, Y. H., Okano, T., and Kim, S. W. (1990), J. Polym. Sci., Part B: Polym. Phys. 28, 923–936.

    Article  CAS  Google Scholar 

  7. Dong, L. C. and Hoffman, A. S. (1986), J. Controlled Release, 4, 223–227.

    Article  CAS  Google Scholar 

  8. Park, T. G. and Hoffman, A. S. (1990), J. Biomed. Mat. Res. 24, 21–38.

    Article  CAS  Google Scholar 

  9. Eremeev, N. L., Sigolaeva, L. V., and Kazanskaya, N. F. (1992), Vestn. MGU. Ser. Khim. 33, 511–515.

    CAS  Google Scholar 

  10. Kokufuta, E., Ogane, O., Iehijo H., Watanabe, S., and Hirasa, O. (1992), J. Chem. Soc. Chem. Commun. 5, 416–418.

    Article  Google Scholar 

  11. Sigolaeva, L. V., Eremeev, N. L., and Kazanskaya, N. F. (1993), Biotckhnologiya 5, 36–39.

    Google Scholar 

  12. Sigolaeva, L. V., Ermeeev, N. L., and Kazanskaya, N. F. (1994), Bioorg. Khim. 20, 268–273.

    CAS  Google Scholar 

  13. Ermeev, N. L., Sigolaeva, L. V., Simakov, P. A., and Kazanskaya, N. F. (1995), Biochemistry (Moscovo) 60, 991–999.

    Google Scholar 

  14. Kokufuta, E., Zhang, Y.-Q., Ilmain, F., and Tanaka, T. (1991), Polym. Prep. Jpn. 40, 4204–4210.

    Google Scholar 

  15. Park, T. G. and Hoffman, A. S. (1988), Appl. Biochem. Biotechnol. 19, 1–9.

    Article  CAS  Google Scholar 

  16. Raison, J. K., Lyons, J. M., and Tomson, W. W. (1971), Arch. Biochem. Biophys. 142, 83–90.

    Article  CAS  Google Scholar 

  17. Watson, K., Bertoli, E., and Griffiths, D. E. (1975), Biochem. J. 146, 401–407.

    CAS  Google Scholar 

  18. Mamada, A., Tanaka, T., Kungwatchakun, D., and Irie, M. (1990), Macromolecules 23, 1517–1519.

    Article  CAS  Google Scholar 

  19. Kokufuta, E., Zhang, Y.-Q., and Tanaka, T. (1991), Nature 351, 302–304.

    Article  Google Scholar 

  20. Plaut, H. and Ritter, J. J. (1951), J. Am. Chem. Soc. 83, 4076,4077.

    Google Scholar 

  21. Dixon, M. and Webb, E. (1982), Enzymes (Russian translation), vol. 1, Mir, Moscow.

    Google Scholar 

  22. Lynn, K. R. (1967), Biochim. Biophys. Acta 146, 205–218.

    CAS  Google Scholar 

  23. Huang, T.-C. and Chen, D.-H. (1992), J. Chem. Tech. Biotechnol. 55, 45–51.

    CAS  Google Scholar 

  24. Huang, T.-C. and Chen, D.-H. (1991), J. Chem. Tech. Biotechnol. 52, 443,444.

    Google Scholar 

  25. Qin, Y. and Cabral, J. M. S. (1994), Appl. Biochem. Biotechnol. 49, 217–240.

    CAS  Google Scholar 

  26. Martins, M. B. F., Cruz, M. E. M., Cabral, J. M. S., and Kennedy, J. F. (1987), J. Chem. Tech. Biotechnol. 39, 201–206.

    Google Scholar 

  27. Jansen, M. and Blume, A. (1995), Biophys. J. 68, 997–1008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay L. Eremeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremeev, N.L., Kukhtin, A.V., Belyaeva, E.A. et al. Effect of thermosensitive matrix-phase transition on urease-catalyzed urea hydrolysis. Appl Biochem Biotechnol 76, 45–55 (1999). https://doi.org/10.1385/ABAB:76:1:45

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:76:1:45

Index Entries

Navigation